Suppr超能文献

通过分子动力学模拟、QM/MM 计算和 NMR 实验研究 RNA 结构中的硫代磷酸酯取代。

Phosphorothioate Substitutions in RNA Structure Studied by Molecular Dynamics Simulations, QM/MM Calculations, and NMR Experiments.

机构信息

CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.

Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.

出版信息

J Phys Chem B. 2021 Jan 28;125(3):825-840. doi: 10.1021/acs.jpcb.0c10192. Epub 2021 Jan 20.

Abstract

Phosphorothioates (PTs) are important chemical modifications of the RNA backbone where a single nonbridging oxygen of the phosphate is replaced with a sulfur atom. PT can stabilize RNAs by protecting them from hydrolysis and is commonly used as a tool to explore their function. It is, however, unclear what basic physical effects PT has on RNA stability and electronic structure. Here, we present molecular dynamics (MD) simulations, quantum mechanical (QM) calculations, and NMR spectroscopy measurements, exploring the effects of PT modifications in the structural context of the neomycin-sensing riboswitch (NSR). The NSR is the smallest biologically functional riboswitch with a well-defined structure stabilized by a U-turn motif. Three of the signature interactions of the U-turn: an H-bond, an anion-π interaction, and a potassium binding site; are formed by RNA phosphates, making the NSR an ideal model for studying how PT affects RNA structure and dynamics. By comparing with high-level QM calculations, we reveal the distinct physical properties of the individual interactions facilitated by the PT. The sulfur substitution, besides weakening the direct H-bond interaction, reduces the directionality of H-bonding while increasing its dispersion and induction components. It also reduces the induction and increases the dispersion component of the anion-π stacking. The sulfur force-field parameters commonly employed in the literature do not reflect these distinctions, leading to the unsatisfactory description of PT in simulations of the NSR. We show that it is not possible to accurately describe the PT interactions using one universal set of van der Waals sulfur parameters and provide suggestions for improving the force-field performance.

摘要

硫代磷酸酯 (PTs) 是 RNA 骨架的重要化学修饰,其中磷酸酯的一个非桥接氧被硫原子取代。PT 可以通过保护 RNA 免受水解来稳定 RNA,并且通常被用作探索其功能的工具。然而,PT 对 RNA 稳定性和电子结构的基本物理影响尚不清楚。在这里,我们通过分子动力学 (MD) 模拟、量子力学 (QM) 计算和 NMR 光谱测量,探索了 PT 修饰在新霉素感应核糖开关 (NSR) 结构背景下对 RNA 稳定性和电子结构的影响。NSR 是最小的具有明确结构的生物功能核糖开关,由 U 型转弯模体稳定。U 型转弯的三个特征相互作用:氢键、阴离子-π 相互作用和钾结合位点;都是由 RNA 磷酸酯形成的,这使得 NSR 成为研究 PT 如何影响 RNA 结构和动力学的理想模型。通过与高水平的 QM 计算进行比较,我们揭示了 PT 对单个相互作用的独特物理性质的影响。硫取代除了削弱直接氢键相互作用外,还降低了氢键的方向性,同时增加了氢键的色散和诱导分量。它还降低了阴离子-π 堆积的诱导和增加了色散分量。文献中常用的硫力场参数不能反映这些区别,导致在 NSR 的模拟中对 PT 的描述不令人满意。我们表明,使用一套通用的范德华硫参数不可能准确描述 PT 相互作用,并提供了改进力场性能的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验