Suppr超能文献

瞬态、定点光热激发加速二氢叶酸还原酶的催化作用。

Acceleration of catalysis in dihydrofolate reductase by transient, site-specific photothermal excitation.

机构信息

Department of Chemistry, Emory University, Atlanta, GA 30322.

Department of Chemistry, Emory University, Atlanta, GA 30322

出版信息

Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2014592118.

Abstract

We have studied the role of protein dynamics in chemical catalysis in the enzyme dihydrofolate reductase (DHFR), using a pump-probe method that employs pulsed-laser photothermal heating of a gold nanoparticle (AuNP) to directly excite a local region of the protein structure and transient absorbance to probe the effect on enzyme activity. Enzyme activity is accelerated by pulsed-laser excitation when the AuNP is attached close to a network of coupled motions in DHFR (on the FG loop, containing residues 116-132, or on a nearby alpha helix). No rate acceleration is observed when the AuNP is attached away from the network (distal mutant and His-tagged mutant) with pulsed excitation, or for any attachment site with continuous wave excitation. We interpret these results within an energy landscape model in which transient, site-specific addition of energy to the enzyme speeds up the search for reactive conformations by activating motions that facilitate this search.

摘要

我们研究了在酶二氢叶酸还原酶 (DHFR) 中蛋白质动力学在化学催化中的作用,使用了一种泵浦探针方法,该方法利用金纳米粒子 (AuNP) 的脉冲激光光热加热来直接激发蛋白质结构的局部区域,并通过瞬态吸收来探测对酶活性的影响。当 AuNP 附着在 DHFR 的耦合运动网络附近时(在 FG 环上,包含残基 116-132,或附近的 alpha 螺旋上),酶活性会随着脉冲激光激发而加速。当 AuNP 远离网络(远侧突变体和 His 标记突变体)时,或者在任何附着位点用连续波激发时,都不会观察到速率加速。我们在能量景观模型中解释了这些结果,在该模型中,酶的瞬时、特定部位的能量增加通过激活促进这种搜索的运动,从而加速对反应构象的搜索。

相似文献

9
Characterizing the Surface Coverage of Protein-Gold Nanoparticle Bioconjugates.表征蛋白-金纳米粒子生物缀合物的表面覆盖率。
Bioconjug Chem. 2018 Aug 15;29(8):2691-2700. doi: 10.1021/acs.bioconjchem.8b00366. Epub 2018 Jul 26.

引用本文的文献

1
A Foundational Shift in Models for Enzyme Function.酶功能模型的根本性转变。
J Am Chem Soc. 2025 May 7;147(18):14884-14904. doi: 10.1021/jacs.5c02388. Epub 2025 Apr 25.
4
Protein Dynamics and Enzymatic Catalysis.蛋白质动力学与酶催化。
J Phys Chem B. 2023 Mar 30;127(12):2649-2660. doi: 10.1021/acs.jpcb.3c00477. Epub 2023 Mar 21.

本文引用的文献

2
Protein Flexibility and Stiffness Enable Efficient Enzymatic Catalysis.蛋白质的柔韧性和刚性使酶催化更高效。
J Am Chem Soc. 2019 Feb 27;141(8):3320-3331. doi: 10.1021/jacs.8b10836. Epub 2019 Feb 14.
3
Characterizing the Surface Coverage of Protein-Gold Nanoparticle Bioconjugates.表征蛋白-金纳米粒子生物缀合物的表面覆盖率。
Bioconjug Chem. 2018 Aug 15;29(8):2691-2700. doi: 10.1021/acs.bioconjchem.8b00366. Epub 2018 Jul 26.
4
Understanding the Kinetics of Protein-Nanoparticle Corona Formation.理解蛋白质-纳米颗粒冠形成的动力学。
ACS Nano. 2016 Dec 27;10(12):10842-10850. doi: 10.1021/acsnano.6b04858. Epub 2016 Nov 16.
7
Protein motions and dynamic effects in enzyme catalysis.酶催化中的蛋白质运动与动态效应
Phys Chem Chem Phys. 2015 Dec 14;17(46):30817-27. doi: 10.1039/c5cp00794a.
9
Linking protein motion to enzyme catalysis.将蛋白质运动与酶催化联系起来。
Molecules. 2015 Jan 13;20(1):1192-209. doi: 10.3390/molecules20011192.
10
The dynamical nature of enzymatic catalysis.酶催化的动态本质。
Acc Chem Res. 2015 Feb 17;48(2):407-13. doi: 10.1021/ar5002928. Epub 2014 Dec 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验