Suppr超能文献

蛋白质的柔韧性和刚性使酶催化更高效。

Protein Flexibility and Stiffness Enable Efficient Enzymatic Catalysis.

机构信息

Department of Chemistry , SUNY, University at Buffalo , Buffalo , New York 14260-3000 , United States.

出版信息

J Am Chem Soc. 2019 Feb 27;141(8):3320-3331. doi: 10.1021/jacs.8b10836. Epub 2019 Feb 14.

Abstract

The enormous rate accelerations observed for many enzyme catalysts are due to strong stabilizing interactions between the protein and reaction transition state. The defining property of these catalysts is their specificity for binding the transition state with a much higher affinity than substrate. Experimental results are presented which show that the phosphodianion-binding energy of phosphate monoester substrates is used to drive conversion of their protein catalysts from flexible and entropically rich ground states to stiff and catalytically active Michaelis complexes. These results are generalized to other enzyme-catalyzed reactions. The existence of many enzymes in flexible, entropically rich, and inactive ground states provides a mechanism for utilization of ligand-binding energy to mold these catalysts into stiff and active forms. This reduces the substrate-binding energy expressed at the Michaelis complex, while enabling the full and specific expression of large transition-state binding energies. Evidence is presented that the complexity of enzyme conformational changes increases with increases in the enzymatic rate acceleration. The requirement that a large fraction of the total substrate-binding energy be utilized to drive conformational changes of floppy enzymes is proposed to favor the selection and evolution of protein folds with multiple flexible unstructured loops, such as the TIM-barrel fold. The effect of protein motions on the kinetic parameters for enzymes that undergo ligand-driven conformational changes is considered. The results of computational studies to model the complex ligand-driven conformational change in catalysis by triosephosphate isomerase are presented.

摘要

许多酶催化剂的巨大速率加速是由于蛋白质与反应过渡态之间存在强烈的稳定相互作用。这些催化剂的定义特征是它们对结合过渡态的特异性,其亲和力远高于底物。实验结果表明,磷酸单酯底物的磷酸二阴离子结合能被用于驱动其蛋白质催化剂从灵活且熵丰富的基态转化为刚性且催化活性的 Michaelis 复合物。这些结果被推广到其他酶催化反应中。许多酶处于灵活、熵丰富和非活性的基态,这为利用配体结合能将这些催化剂塑造成刚性和活性形式提供了一种机制。这降低了 Michaelis 复合物中表达的底物结合能,同时使大过渡态结合能得以充分和特异性表达。有证据表明,酶构象变化的复杂性随酶促速率加速的增加而增加。提出了一个要求,即需要利用大部分总底物结合能来驱动松软酶的构象变化,这有利于选择和进化具有多个灵活无规卷曲的蛋白质折叠,如 TIM 桶折叠。还考虑了蛋白质运动对经历配体驱动构象变化的酶的动力学参数的影响。提出了用于模拟磷酸丙糖异构酶催化中复杂配体驱动构象变化的计算研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a749/6396832/dcaa145c5357/ja-2018-10836d_0004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验