Suppr超能文献

用于超透明储能的间隙硼掺杂介孔半导体氧化物

Interstitial boron-doped mesoporous semiconductor oxides for ultratransparent energy storage.

作者信息

Zhi Jian, Zhou Min, Zhang Zhen, Reiser Oliver, Huang Fuqiang

机构信息

State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, P. R. China.

Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg, Germany.

出版信息

Nat Commun. 2021 Jan 19;12(1):445. doi: 10.1038/s41467-020-20352-4.

Abstract

Realizing transparent and energy-dense supercapacitor is highly challenging, as there is a trade-off between energy storing capability and transparency in the active material film. We report here that interstitial boron-doped mesoporous semiconductor oxide shows exceptional electrochemical capacitance which rivals other pseudocapacitive materials, while maintaining its transparent characteristic. This improvement is credited to the robust redox reactions at interstitial boron-associated defects that transform inert semiconductor oxides into an electrochemically active material without affecting its transparency. By precisely tuning the level of doping, the pseudocapacitive reactivity of these materials is optimized, resulting in a volumetric capacitance up to 1172 F cm. Attributing to such efficient charge storage utilization on the active film, the fabricated transparent supercapacitor delivers a maximum areal energy density of 1.36 × 10 mWh cm that is close to those of conventional pseudocapacitive materials, with nearly 100% capacitance retention after 15000 cycles and ultrahigh transparency (up to 85% transmittance at 550 nm). In addition, this device shows excellent durability and flexibility with multiple optional outputs, demonstrating the potential as a transparent energy supply in planar electronics.

摘要

实现透明且能量密集的超级电容器极具挑战性,因为在活性材料薄膜的储能能力和透明度之间存在权衡。我们在此报告,间隙硼掺杂的介孔半导体氧化物表现出卓越的电化学电容,可与其他赝电容材料相媲美,同时保持其透明特性。这种改进归功于间隙硼相关缺陷处强大的氧化还原反应,该反应将惰性半导体氧化物转化为电化学活性材料而不影响其透明度。通过精确调整掺杂水平,这些材料的赝电容反应性得以优化,从而产生高达1172 F/cm³的体积电容。由于在活性薄膜上如此高效的电荷存储利用,所制备的透明超级电容器具有1.36×10⁻³ mWh/cm²的最大面积能量密度,接近传统赝电容材料,在15000次循环后电容保留率近100%且具有超高透明度(在550 nm处高达85%的透过率)。此外,该器件具有出色的耐久性和柔韧性以及多种可选输出,展现出作为平面电子器件中透明能量供应的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b39c/7815797/c035dc6a9c1f/41467_2020_20352_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验