Suppr超能文献

使用贝叶斯惩罚似然重建算法改进Zr免疫正电子发射断层扫描(Zr-immunoPET)研究的图像重建

Improved image reconstruction of Zr-immunoPET studies using a Bayesian penalized likelihood reconstruction algorithm.

作者信息

Kirchner Julian, O'Donoghue Joseph A, Becker Anton S, Ulaner Gary A

机构信息

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany.

出版信息

EJNMMI Phys. 2021 Jan 19;8(1):6. doi: 10.1186/s40658-021-00352-z.

Abstract

PURPOSE

The aim of this study was to evaluate the use of a Bayesian penalized likelihood reconstruction algorithm (Q.Clear) for Zr-immunoPET image reconstruction and its potential to improve image quality and reduce the administered activity of Zr-immunoPET tracers.

METHODS

Eight Zr-immunoPET whole-body PET/CT scans from three Zr-immunoPET clinical trials were selected for analysis. On average, patients were imaged 6.3 days (range 5.0-8.0 days) after administration of 69 MBq (range 65-76 MBq) of [Zr]Zr-DFO-daratumumab, [Zr]Zr-DFO-pertuzumab, or [Zr]Zr-DFO-trastuzumab. List-mode PET data was retrospectively reconstructed using Q.Clear with incremental β-values from 150 to 7200, as well as standard ordered-subset expectation maximization (OSEM) reconstruction (2-iterations, 16-subsets, a 6.4-mm Gaussian transaxial filter, "heavy" z-axis filtering and all manufacturers' corrections active). Reduced activities were simulated by discarding 50% and 75% of original counts in each list mode stream. All reconstructed PET images were scored for image quality and lesion detectability using a 5-point scale. SUV for normal liver and sites of disease and liver signal-to-noise ratio were measured.

RESULTS

Q.Clear reconstructions with β = 3600 provided the highest scores for image quality. Images reconstructed with β-values of 3600 or 5200 using only 50% or 25% of the original counts provided comparable or better image quality scores than standard OSEM reconstruction images using 100% of counts.

CONCLUSION

The Bayesian penalized likelihood reconstruction algorithm Q.Clear improved the quality of Zr-immunoPET images. This could be used in future studies to improve image quality and/or decrease the administered activity of Zr-immunoPET tracers.

摘要

目的

本研究旨在评估贝叶斯惩罚似然重建算法(Q.Clear)在Zr免疫正电子发射断层显像(PET)图像重建中的应用,以及其改善图像质量和降低Zr免疫PET示踪剂给药剂量的潜力。

方法

从三项Zr免疫PET临床试验中选取八例Zr免疫PET全身PET/CT扫描进行分析。平均而言,患者在注射69 MBq(范围65 - 76 MBq)的[Zr]Zr-DFO-达雷妥尤单抗、[Zr]Zr-DFO-帕妥珠单抗或[Zr]Zr-DFO-曲妥珠单抗后6.3天(范围5.0 - 8.0天)进行成像。列表模式PET数据使用Q.Clear进行回顾性重建,β值从150递增至7200,同时使用标准的有序子集期望最大化(OSEM)重建(2次迭代,16个子集,6.4毫米高斯横向滤波器,“重度”z轴滤波,所有制造商校正开启)。通过在每个列表模式数据流中丢弃50%和75%的原始计数来模拟降低剂量情况。使用5分制对所有重建的PET图像进行图像质量和病变可检测性评分。测量正常肝脏和疾病部位的标准化摄取值(SUV)以及肝脏信噪比。

结果

β = 3600时的Q.Clear重建图像质量得分最高。仅使用50%或25%原始计数且β值为3600或5200重建的图像,其质量得分与使用100%计数的标准OSEM重建图像相当或更高。

结论

贝叶斯惩罚似然重建算法Q.Clear改善了Zr免疫PET图像质量。这可用于未来研究以改善图像质量和/或降低Zr免疫PET示踪剂的给药剂量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586c/7815860/d01d702766d9/40658_2021_352_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验