Suppr超能文献

在镓[68Ga] DOTATATE PET/CT研究中,能否使用惩罚似然估计算法来减少注射剂量或采集时间?

Can a penalized-likelihood estimation algorithm be used to reduce the injected dose or the acquisition time in Ga-DOTATATE PET/CT studies?

作者信息

Chicheportiche Alexandre, Goshen Elinor, Godefroy Jeremy, Grozinsky-Glasberg Simona, Oleinikov Kira, Meirovitz Amichay, Gross David J, Ben-Haim Simona

机构信息

Department of Nuclear Medicine & Biophysics, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel.

Department of Nuclear Medicine, Wolfson Medical Center, 58100, Holon, Israel.

出版信息

EJNMMI Phys. 2021 Feb 12;8(1):13. doi: 10.1186/s40658-021-00359-6.

Abstract

BACKGROUND

Image quality and quantitative accuracy of positron emission tomography (PET) depend on several factors such as uptake time, scanner characteristics and image reconstruction methods. Ordered subset expectation maximization (OSEM) is considered the gold standard for image reconstruction. Penalized-likelihood estimation (PL) algorithms have been recently developed for PET reconstruction to improve quantitation accuracy while maintaining or even improving image quality. In PL algorithms, a regularization parameter β controls the penalization of relative differences between neighboring pixels and determines image characteristics. In the present study, we aim to compare the performance of Q.Clear (PL algorithm, GE Healthcare) and OSEM (3 iterations, 8 subsets, 6-mm post-processing filter) for Ga-DOTATATE (Ga-DOTA) PET studies, both visually and quantitatively. Thirty consecutive whole-body Ga-DOTA studies were included. The data were acquired in list mode and were reconstructed using 3D OSEM and Q.Clear with various values of β and various acquisition times per bed position (bp), thus generating images with reduced injected dose (1.5 min/bp: β = 300-1100; 1.0 min/bp: β = 600-1400 and 0.5 min/bp: β = 800-2200). An additional analysis adding β values up to 1500, 1700 and 3000 for 1.5, 1.0 and 0.5 min/bp, respectively, was performed for a random sample of 8 studies. Evaluation was performed using a phantom and clinical data. Two experienced nuclear medicine physicians blinded to the variables assessed the image quality visually.

RESULTS

Clinical images reconstructed with Q.Clear, set at 1.5, 1.0 and 0.5 min/bp using β = 1100, 1300 and 3000, respectively, resulted in images with noise equivalence to 3D OSEM (1.5 min/bp) with a mean increase in SUV of 14%, 13% and 4%, an increase in SNR of 30%, 24% and 10%, and an increase in SBR of 13%, 13% and 2%. Visual assessment yielded similar results for β values of 1100-1400 and 1300-1600 for 1.5 and 1.0 min/bp, respectively, although for 0.5 min/bp there was no significant improvement compared to OSEM.

CONCLUSION

Ga-DOTA reconstructions with Q.Clear, 1.5 and 1.0 min/bp, resulted in increased tumor SUV and in improved SNR and SBR at a similar level of noise compared to 3D OSEM. Q.Clear with β = 1300-1600 enables one-third reduction of acquisition time or injected dose, with similar image quality compared to 3D OSEM.

摘要

背景

正电子发射断层扫描(PET)的图像质量和定量准确性取决于多个因素,如摄取时间、扫描仪特性和图像重建方法。有序子集期望最大化(OSEM)被认为是图像重建的金标准。惩罚似然估计(PL)算法最近已被开发用于PET重建,以提高定量准确性,同时保持甚至改善图像质量。在PL算法中,正则化参数β控制相邻像素之间相对差异的惩罚,并决定图像特征。在本研究中,我们旨在从视觉和定量方面比较Q.Clear(PL算法,通用电气医疗集团)和OSEM(3次迭代,8个子集,6毫米后处理滤波器)在镓[68Ga] - DOTATATE(Ga - DOTA)PET研究中的性能。纳入了连续30例全身Ga - DOTA研究。数据以列表模式采集,并使用3D OSEM和Q.Clear进行重建,β取不同值,每个床位位置(bp)有不同的采集时间,从而生成注射剂量降低的图像(1.5分钟/bp:β = 300 - 1100;1.0分钟/bp:β = 600 - 1400;0.5分钟/bp:β = 800 - 2200)。对8项研究的随机样本进行了额外分析,分别为1.5、1.0和0.5分钟/bp添加了高达1500、1700和3000的β值。使用体模和临床数据进行评估。两名对变量不知情的经验丰富的核医学医师对图像质量进行视觉评估。

结果

使用Q.Clear重建的临床图像,分别在1.5、1.0和0.5分钟/bp时设置β = 1100、1300和3000,所得到的图像噪声与3D OSEM(1.5分钟/bp)相当,标准化摄取值(SUV)平均增加14%、13%和4%,信噪比(SNR)增加30%、24%和10%,信号与本底比(SBR)增加13%、13%和2%。视觉评估结果显示,对于1.5分钟/bp,β值为1100 - 1400时结果相似;对于1.0分钟/bp,β值为1300 - 1600时结果相似,不过对于0.5分钟/bp,与OSEM相比没有显著改善。

结论

与3D OSEM相比,采用Q.Clear、1.5和1.0分钟/bp进行Ga - DOTA重建,在相似噪声水平下可提高肿瘤SUV,并改善SNR和SBR。β = 1300 - 1600的Q.Clear可将采集时间或注射剂量减少三分之一,且图像质量与3D OSEM相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/7881076/d3a6fca545de/40658_2021_359_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验