Suppr超能文献

语音流分离以控制基于 ERP 的听觉脑机接口。

Speech stream segregation to control an ERP-based auditory BCI.

机构信息

Departamento de Tecnología Electrónica, Universidad de Málaga, Málaga, Spain.

出版信息

J Neural Eng. 2021 Mar 3;18(2). doi: 10.1088/1741-2552/abdd44.

Abstract

. The use of natural sounds in auditory brain-computer interfaces (BCI) has been shown to improve classification results and usability. Some auditory BCIs are based on stream segregation, in which the subjects must attend one audio stream and ignore the other(s); these streams include some kind of stimuli to be detected. In this work we focus on event-related potentials (ERP) and study whether providing intelligible content to each audio stream could help the users to better concentrate on the desired stream and so to better attend the target stimuli and to ignore the non-target ones.. In addition to a control condition, two experimental conditions, based on the selective attention and the cocktail party effect, were tested using two simultaneous and spatialized audio streams: (a) the condition A2 consisted of an overlap of auditory stimuli (single syllables) on a background consisting of natural speech for each stream, (b) in condition A3, brief alterations of the natural flow of each speech were used as stimuli.. The two experimental proposals improved the results of the control condition (single words as stimuli without a speech background) both in a cross validation analysis of the calibration part and in the online test. The analysis of the ERP responses also presented better discriminability for the two proposals in comparison to the control condition. The results of subjective questionnaires support the better usability of the first experimental condition.. The use of natural speech as background improves the stream segregation in an ERP-based auditory BCI (with significant results in the performance metrics, the ERP waveforms, and in the preference parameter in subjective questionnaires). Future work in the field of ERP-based stream segregation should study the use of natural speech in combination with easily perceived but not distracting stimuli.

摘要

. 在基于听觉的脑机接口 (BCI) 中使用自然声音已被证明可以提高分类结果和可用性。一些基于听觉的 BCI 是基于流分离的,在这种情况下,受试者必须关注一个音频流并忽略其他音频流;这些流包括一些需要检测的刺激。在这项工作中,我们专注于事件相关电位 (ERP),并研究为每个音频流提供可理解的内容是否可以帮助用户更好地专注于所需的流,从而更好地关注目标刺激并忽略非目标刺激。除了控制条件外,还测试了两种基于选择性注意和鸡尾酒会效应的实验条件,使用两个同时和空间化的音频流:(a)条件 A2 由听觉刺激(单个音节)与每个流的自然语音背景重叠组成,(b)在条件 A3 中,每个语音的自然流短暂改变用作刺激。两种实验方案都改善了控制条件(没有语音背景的单个单词作为刺激)的结果,无论是在校准部分的交叉验证分析还是在线测试中。ERP 响应的分析也表明,与控制条件相比,两种方案的可辨别性更好。主观问卷的分析结果支持第一种实验条件的更好可用性。自然语音的使用可以改善基于 ERP 的听觉 BCI 中的流分离(在性能指标、ERP 波形和主观问卷中的偏好参数方面都有显著结果)。基于 ERP 的流分离领域的未来工作应研究自然语音与易于感知但不分散注意力的刺激结合使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验