Suppr超能文献

对抗密集图卷积网络用于单细胞分类。

Adversarial dense graph convolutional networks for single-cell classification.

机构信息

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Bioinformatics. 2023 Feb 3;39(2). doi: 10.1093/bioinformatics/btad043.

Abstract

MOTIVATION

In single-cell transcriptomics applications, effective identification of cell types in multicellular organisms and in-depth study of the relationships between genes has become one of the main goals of bioinformatics research. However, data heterogeneity and random noise pose significant difficulties for scRNA-seq data analysis.

RESULTS

We have proposed an adversarial dense graph convolutional network architecture for single-cell classification. Specifically, to enhance the representation of higher-order features and the organic combination between features, dense connectivity mechanism and attention-based feature aggregation are introduced for feature learning in convolutional neural networks. To preserve the features of the original data, we use a feature reconstruction module to assist the goal of single-cell classification. In addition, HNNVAT uses virtual adversarial training to improve the generalization and robustness. Experimental results show that our model outperforms the existing classical methods in terms of classification accuracy on benchmark datasets.

AVAILABILITY AND IMPLEMENTATION

The source code of HNNVAT is available at https://github.com/DisscLab/HNNVAT.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在单细胞转录组学应用中,有效识别多细胞生物中的细胞类型和深入研究基因之间的关系已成为生物信息学研究的主要目标之一。然而,数据异质性和随机噪声给 scRNA-seq 数据分析带来了很大的困难。

结果

我们提出了一种对抗密集图卷积网络架构用于单细胞分类。具体来说,为了增强高阶特征的表示和特征之间的有机结合,在卷积神经网络中引入了密集连接机制和基于注意力的特征聚合进行特征学习。为了保留原始数据的特征,我们使用特征重建模块辅助单细胞分类的目标。此外,HNNVAT 使用虚拟对抗训练来提高泛化能力和鲁棒性。实验结果表明,我们的模型在基准数据集上的分类准确性方面优于现有的经典方法。

可用性和实现

HNNVAT 的源代码可在 https://github.com/DisscLab/HNNVAT 上获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1a1/9919433/90efb0c2fedc/btad043f5.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验