IEEE Trans Biomed Eng. 2021 May;68(5):1668-1679. doi: 10.1109/TBME.2021.3053197. Epub 2021 Apr 21.
Interstitial photodynamic therapy (iPDT) has shown promising results recently as a minimally invasive stand-alone or intra-operative cancer treatment. The development of non-toxic photosensitizing drugs with improved target selectivity has increased its efficacy. However, personalized treatment planning that determines the number of photon emitters, their positions and their input powers while taking into account tissue anatomy and treatment response is still lacking to further improve outcomes.
To develop new algorithms that generate high-quality plans by optimizing over the light source positions, along with their powers, to minimize the damage to organs-at-risk while eradicating the tumor. The optimization algorithms should also accurately model the physics of light propagation through the use of Monte-Carlo simulators.
We use simulated-annealing as a baseline algorithm to place the sources. We propose different source perturbations that are likely to provide better outcomes and study their impact. To minimize the number of moves attempted (and effectively runtime) without degrading result quality, we use a reinforcement learning-based method to decide which perturbation strategy to perform in each iteration. We simulate our algorithm on virtual brain tumors modeling real glioblastoma multiforme cases, assuming a 5-ALA PpIX induced photosensitizer that is activated at [Formula: see text] wavelength.
The algorithm generates plans that achieve an average of 46% less damage to organs-as-risk compared to the manual placement used in current clinical studies.
Having a general and high-quality planning system makes iPDT more effective and applicable to a wider variety of oncological indications. This paves the way for more clinical trials.
间质光动力疗法 (iPDT) 最近作为一种微创的独立或术中癌症治疗方法显示出了有前景的结果。具有提高的靶选择性的无毒光敏药物的发展提高了其疗效。然而,仍然缺乏确定光子发射器的数量、它们的位置和它们的输入功率的个性化治疗计划,同时考虑到组织解剖结构和治疗反应,以进一步提高结果。
开发新的算法,通过优化光源位置及其功率来生成高质量的计划,从而最大限度地减少对危险器官的损伤,同时消灭肿瘤。优化算法还应通过使用蒙特卡罗模拟器准确地模拟光在组织中的传播物理。
我们使用模拟退火作为放置光源的基准算法。我们提出了不同的源扰动,这些扰动可能会提供更好的结果,并研究它们的影响。为了在不降低结果质量的情况下减少尝试的移动次数(有效运行时),我们使用基于强化学习的方法来决定在每个迭代中执行哪个扰动策略。我们在模拟的脑肿瘤上模拟我们的算法,模拟真实的胶质母细胞瘤多形性病例,假设使用 5-ALA PpIX 诱导的光敏剂,在[公式:见文本]波长下被激活。
该算法生成的计划与当前临床研究中使用的手动放置相比,平均减少了 46%的危险器官损伤。
拥有一个通用的高质量规划系统使 iPDT 更加有效,并适用于更多种类的肿瘤适应症。这为更多的临床试验铺平了道路。