Li Xiao, Gao Kuan, Mo Bingyan, Tang Jixin, Wu Jie, Hou Hongwei
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
Inorg Chem. 2021 Feb 1;60(3):1352-1358. doi: 10.1021/acs.inorgchem.0c02423. Epub 2021 Jan 21.
Herein, a surface site engineering strategy is used to construct a porous Z-scheme heterojunction photocatalyst for photocatalytic hydrogen evolution (PHE) by integration of BiOI in a mesoporous Zr-based metal-organic framework (MOF) NU-1000. Three high-quality and highly dispersed BiOI@NU-1000 heterojunction materials are synthesized, and a set of methods is used to characterize these materials, indicating that the BiOI@NU-1000 heterojunction can retain high porosity and crystallinity of the parent NU-1000. Furthermore, the built-in electric field of the BiOI@NU-1000 composite can effectively tune the band gap, promote the separation of photoinduced charge carriers, improve photocurrent intensity, and reduce photoelectric impedance. Under visible-light irradiation, BiOI@NU-1000-2 showed the best photocatalytic performance in the field of MOF-based photocatalysts for PHE, with a hydrogen production rate of up to 610 μmol h g. This study will open up opportunities for the construction of Z-scheme photocatalysts based on the highly porous MOF materials to inspire the development of innovative photocatalysts.
在此,通过将BiOI整合到介孔Zr基金属有机框架(MOF)NU-1000中,采用表面位点工程策略构建了一种用于光催化析氢(PHE)的多孔Z型异质结光催化剂。合成了三种高质量且高度分散的BiOI@NU-1000异质结材料,并使用一套方法对这些材料进行表征,表明BiOI@NU-1000异质结能够保留母体NU-1000的高孔隙率和结晶度。此外,BiOI@NU-1000复合材料的内建电场能够有效调节带隙,促进光生电荷载流子的分离,提高光电流强度并降低光电阻抗。在可见光照射下,BiOI@NU-1000-2在基于MOF的光催化剂用于PHE的领域中表现出最佳的光催化性能,产氢速率高达610 μmol h g。本研究将为基于高孔隙率MOF材料构建Z型光催化剂开辟机会,以推动创新光催化剂的发展。