Suppr超能文献

基于呼吸系统患者特定模型的非侵入性肺肿瘤跟踪。

Towards Non-Invasive Lung Tumor Tracking Based on Patient Specific Model of Respiratory System.

出版信息

IEEE Trans Biomed Eng. 2021 Sep;68(9):2730-2740. doi: 10.1109/TBME.2021.3053321. Epub 2021 Aug 19.

Abstract

The goal of this paper is to calculate a complex internal respiratory and tumoral movements by measuring respiratory air flows and thorax movements. In this context, we present a new lung tumor tracking approach based on a patient-specific biomechanical model of the respiratory system, which takes into account the physiology of respiratory motion to simulate the real non-reproducible motion. The behavior of the lungs, is directly driven by the simulated actions of the breathing muscles, i.e. the diaphragm and the intercostal muscles (the rib cage). In this paper, the lung model is monitored and controlled by a personalized lung pressure/volume relationship during a whole respiratory cycle. The lung pressure and rib kinematics are patient specific and obtained by surrogate measurement. The rib displacement corresponding to the transformation which was computed by finite helical axis method from the end of exhalation (EE) to the end of inhalation (EI). The lung pressure is calculated by an optimization framework based on inverse finite element analysis, by minimizing the lung volume errors, between the respiratory volume (respiratory airflow exchange) and the simulated volume (calculated by biomechanical simulation). We have evaluated the model accuracy on five public datasets. We have also evaluated the lung tumor motion identified in 4D CT scan images and compared it with the trajectory that was obtained by finite element simulation. The effects of rib kinematics on lung tumor trajectory were investigated. Over all phases of respiration, our developed model is able to predict the lung tumor motion with an average landmark error of [Formula: see text]. The results demonstrate the effectiveness of our physics-based model. We believe that this model can be potentially used in 4D dose computation, removal of breathing motion artifacts in positron emission tomography (PET) or gamma prompt image reconstruction.

摘要

本文旨在通过测量呼吸气流和胸腔运动来计算复杂的内部呼吸和肿瘤运动。为此,我们提出了一种新的基于呼吸系统患者特定生物力学模型的肺肿瘤跟踪方法,该方法考虑了呼吸运动的生理学,以模拟真实的不可重复运动。肺的行为直接由呼吸肌肉(即膈肌和肋间肌)的模拟动作驱动。在本文中,肺模型通过整个呼吸周期中的个性化肺压力/容量关系进行监测和控制。肺压力和肋骨运动是患者特有的,并通过替代测量获得。肋骨位移对应于从呼气末(EE)到吸气末(EI)计算的有限螺旋轴方法的变换。肺压力通过基于逆有限元分析的优化框架计算,通过最小化呼吸量(呼吸气流交换)和模拟量(通过生物力学模拟计算)之间的肺容量误差来计算。我们已经在五个公共数据集上评估了模型的准确性。我们还评估了 4D CT 扫描图像中识别的肺肿瘤运动,并将其与通过有限元模拟获得的轨迹进行了比较。研究了肋骨运动学对肺肿瘤轨迹的影响。在整个呼吸阶段,我们开发的模型能够以平均标志点误差[公式:见正文]预测肺肿瘤运动。结果表明了我们基于物理模型的有效性。我们相信,该模型可用于 4D 剂量计算、去除正电子发射断层扫描(PET)中的呼吸运动伪影或伽马瞬时图像重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验