Suppr超能文献

基于实验体积、压力和应变构建广义结构三维呼吸人体肺部模型。

Towards constructing a generalized structural 3D breathing human lung model based on experimental volumes, pressures, and strains.

作者信息

Badrou Arif, Mariano Crystal A, Ramirez Gustavo O, Shankel Matthew, Rebelo Nuno, Eskandari Mona

机构信息

Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America.

Nuno Rebelo Associates, LLC, Fremont, California, United States of America.

出版信息

PLoS Comput Biol. 2025 Jan 13;21(1):e1012680. doi: 10.1371/journal.pcbi.1012680. eCollection 2025 Jan.

Abstract

Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung. Here we construct a generalizable computational framework directly validated by pressure, volume, and strain measurements using a novel inflating apparatus interfaced with adapted, lung-specific, digital image correlation techniques. The parenchyma, pleura, and airways are represented with a poroelastic formulation to simulate pressure flows within the lung lobes, calibrating the model's material properties with the global pressure-volume response and local tissue deformations strains. The optimization yielded the following shear moduli: parenchyma (2.8 kPa), airways (0.2 kPa), and pleura (1.7 Pa). The proposed complex multi-material model with multi-experimental inputs was successfully developed using human lung data, and reproduced the shape of the inflating pressure-volume curve and strain distribution values associated with pulmonary deformation. This advancement marks a significant step towards creating a generalizable human lung model for broad applications across animal models, such as porcine, mouse, and rat lungs to reproduce pathological states and improve performance investigations regarding medical therapeutics and intervention.

摘要

呼吸系统疾病构成了重大的医疗负担,COVID-19的破坏性影响就是明证。生物物理模型提供了预测系统行为并深入了解生理功能的可能性,而在肺力学研究方面,这些进展相对来说还处于起步阶段。在此背景下,开发了一种逆有限元分析(IFEA)流程,以构建首个通过来自一具人类尸体肺的器官和组织层面呼吸实验得到信息的、持续通气的三维结构代表性肺模型。在这里,我们构建了一个可推广的计算框架,该框架通过使用一种与适配的、肺特异性数字图像相关技术相连的新型充气装置,直接由压力、体积和应变测量进行验证。实质组织、胸膜和气道采用多孔弹性公式表示,以模拟肺叶内的压力流动,并根据整体压力-体积响应和局部组织变形应变校准模型的材料属性。优化得出以下剪切模量:实质组织(2.8千帕)、气道(0.2千帕)和胸膜(1.7帕)。利用人类肺数据成功开发了所提出的具有多实验输入的复杂多材料模型,该模型再现了充气压力-体积曲线的形状以及与肺变形相关的应变分布值。这一进展标志着朝着创建一个可推广的人类肺模型迈出了重要一步,该模型可广泛应用于动物模型,如猪、小鼠和大鼠的肺,以再现病理状态并改善有关医学治疗和干预的性能研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8aa3/11729960/bea6966519bf/pcbi.1012680.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验