Suppr超能文献

使用深度学习对手部运动学进行稳健且准确的解码。

Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning.

机构信息

Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, United Kingdom.

Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.

出版信息

J Neural Eng. 2021 Feb 26;18(2). doi: 10.1088/1741-2552/abde8a.

Abstract

. Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinical translation of intracortical BMIs.. We propose entire spiking activity (ESA)-an envelope of spiking activity that can be extracted by a simple, threshold-less, and automated technique-as the input signal. We couple ESA with deep learning-based decoding algorithm that uses quasi-recurrent neural network (QRNN) architecture. We evaluate comprehensively the performance of ESA-driven QRNN decoder for decoding hand kinematics from neural signals chronically recorded from the primary motor cortex area of three non-human primates performing different tasks.. Our proposed method yields consistently higher decoding performance than any other combinations of the input signal and decoding algorithm previously reported across long-term recording sessions. It can sustain high decoding performance even when removing spikes from the raw signals, when using the different number of channels, and when using a smaller amount of training data.. Overall results demonstrate exceptionally high decoding accuracy and chronic robustness, which is highly desirable given it is an unresolved challenge in BMIs.

摘要

脑机接口(BMIs)旨在通过使患者能够直接用思维控制外部设备,从而恢复神经障碍患者丧失的运动功能。这项工作旨在提高鲁棒性和解码准确性,这是目前皮质内 BMI 临床转化的主要挑战。

我们提出了整个尖峰活动(ESA)-一种可以通过简单、无阈值和自动技术提取的尖峰活动包络-作为输入信号。我们将 ESA 与基于深度学习的解码算法相结合,该算法使用拟递归神经网络(QRNN)架构。我们从三个执行不同任务的非人类灵长类动物的初级运动皮层区域长期记录的神经信号中,全面评估了 ESA 驱动的 QRNN 解码器对手部运动学的解码性能。

与之前报道的长期记录会话中输入信号和解码算法的任何其他组合相比,我们提出的方法始终产生更高的解码性能。即使从原始信号中去除尖峰,使用不同数量的通道,以及使用较少的训练数据时,它也可以维持高的解码性能。

总体结果表明解码准确性和慢性鲁棒性非常高,这在 BMI 中是一个未解决的挑战,因此这是非常需要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验