Suppr超能文献

Duchenne 和 Becker 肌营养不良症在 MD STARnet 监测点的患病率:对种族和民族差异的考察。

Duchenne and Becker Muscular Dystrophies' Prevalence in MD STARnet Surveillance Sites: An Examination of Racial and Ethnic Differences.

机构信息

Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA.

Department of Preventive Medicine, School of Medicine and John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, Mississippi, USA,

出版信息

Neuroepidemiology. 2021;55(1):47-55. doi: 10.1159/000512647. Epub 2021 Jan 21.

Abstract

INTRODUCTION

Previous studies indicated variability in the prevalence of Duchenne and Becker muscular dystrophies (DBMD) by racial/ethnic groups. The Centers for Disease Control and Prevention's (CDC) Muscular Dystrophy Surveillance, Tracking, and Research network (MD STARnet) conducts muscular dystrophy surveillance in multiple geographic areas of the USA and continues to enroll new cases. This provides an opportunity to continue investigating differences in DBMD prevalence by race and ethnicity and to compare the impact of using varying approaches for estimating prevalence.

OBJECTIVE

To estimate overall and race/ethnicity-specific prevalence of DBMD among males aged 5-9 years and compare the performance of three prevalence estimation methods.

METHODS

The overall and race/ethnicity-specific 5-year period prevalence rates were estimated with MD STARnet data using three methods. Method 1 used the median of 5-year prevalence, and methods 2 and 3 calculated prevalence directly with different birth cohorts. To compare prevalence between racial/ethnic groups, Poisson modeling was used to estimate prevalence ratios (PRs) with non-Hispanic (NH) whites as the referent group. Comparison between methods was also conducted.

RESULTS

In the final population-based sample of 1,164 DBMD males, the overall 5-year prevalence for DBMD among 5-9 years of age ranged from 1.92 to 2.48 per 10,000 males, 0.74-1.26 for NH blacks, 1.78-2.26 for NH whites, 2.24-4.02 for Hispanics, and 0.61-1.83 for NH American Indian or Alaska Native and Asian or Native Hawaiian or Pacific Islander (AIAN/API). The PRs for NH blacks/NH whites, Hispanics/NH whites, and NH AIAN/API/NH whites were 0.46 (95% CI: 0.36-0.59), 1.37 (1.17-1.61), and 0.61 (0.40-0.93), respectively.

CONCLUSIONS

In males aged 5-9 years, compared to the prevalence of DBMD in NH whites, prevalence in NH blacks and NH AIAN/API was lower and higher in Hispanics. All methods produced similar prevalence estimates; however, method 1 produced narrower confidence intervals and method 2 produced fewer zero prevalence estimates than the other two methods.

摘要

简介

先前的研究表明,不同种族/族群的杜氏肌营养不良症(DBMD)患病率存在差异。疾病控制与预防中心(CDC)的肌肉营养不良监测、跟踪和研究网络(MD STARnet)在美国多个地理区域进行肌肉营养不良监测,并继续招募新病例。这为继续研究不同种族和族裔之间 DBMD 患病率的差异以及比较使用不同方法估计患病率的影响提供了机会。

目的

估计 5-9 岁男性中 DBMD 的总体患病率和种族/族群特异性患病率,并比较三种患病率估计方法的性能。

方法

使用 MD STARnet 数据,使用三种方法估计总体和种族/族群特异性的 5 年期间患病率。方法 1 使用 5 年患病率中位数,方法 2 和 3 则使用不同的出生队列直接计算患病率。为了比较不同种族/族群之间的患病率,使用泊松模型估计以非西班牙裔白人(NH 白人)为参照组的患病率比(PR)。还比较了方法之间的差异。

结果

在最终的基于人群的 1164 名 DBMD 男性样本中,5-9 岁 DBMD 的总体 5 年患病率范围为每 10000 名男性 1.92-2.48,NH 黑人 0.74-1.26,NH 白人 1.78-2.26,西班牙裔 2.24-4.02,NH 美洲印第安人或阿拉斯加原住民和亚洲或夏威夷原住民或太平洋岛民(AIAN/API)0.61-1.83。NH 黑人/NH 白人、西班牙裔/NH 白人、NH AIAN/API/NH 白人的 PR 分别为 0.46(95%CI:0.36-0.59)、1.37(1.17-1.61)和 0.61(0.40-0.93)。

结论

在 5-9 岁男性中,与 NH 白人的 DBMD 患病率相比,NH 黑人和 NH AIAN/API 的患病率较低,西班牙裔的患病率较高。所有方法都产生了相似的患病率估计值;然而,方法 1 产生了较窄的置信区间,方法 2 产生了比其他两种方法更少的零患病率估计值。

相似文献

引用本文的文献

本文引用的文献

2
The Problem of Rarity: Estimation of Prevalence in Rare Disease.罕见病问题:患病率估计。
Value Health. 2018 May;21(5):501-507. doi: 10.1016/j.jval.2018.03.002. Epub 2018 Apr 5.
5
Duchenne muscular dystrophy.杜兴氏肌肉营养不良症
J Paediatr Child Health. 2015 Aug;51(8):759-64. doi: 10.1111/jpc.12868. Epub 2015 Mar 9.
7
Duchenne and Becker muscular dystrophies.杜氏肌营养不良症和贝克肌营养不良症。
Neurol Clin. 2014 Aug;32(3):671-88, viii. doi: 10.1016/j.ncl.2014.05.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验