Suppr超能文献

美国杜氏肌营养不良症和贝克肌营养不良症患病率估计值的变异来源。

Sources of variation in estimates of Duchenne and Becker muscular dystrophy prevalence in the United States.

机构信息

Social, Statistical, and Environmental Sciences, RTI International, 2987 Clairmont Road NE, Atlanta, GA, USA.

Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC, USA.

出版信息

Orphanet J Rare Dis. 2023 Mar 22;18(1):65. doi: 10.1186/s13023-023-02662-0.

Abstract

BACKGROUND

Direct estimates of rare disease prevalence from public health surveillance may only be available in a few catchment areas. Understanding variation among observed prevalence can inform estimates of prevalence in other locations. The Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet) conducts population-based surveillance of major muscular dystrophies in selected areas of the United States. We identified sources of variation in prevalence estimates of Duchenne and Becker muscular dystrophy (DBMD) within MD STARnet from published literature and a survey of MD STARnet investigators, then developed a logic model of the relationships between the sources of variation and estimated prevalence.

RESULTS

The 17 identified sources of variability fell into four categories: (1) inherent in surveillance systems, (2) particular to rare diseases, (3) particular to medical-records-based surveillance, and (4) resulting from extrapolation. For the sources of uncertainty measured by MD STARnet, we estimated each source's contribution to the total variance in DBMD prevalence. Based on the logic model we fit a multivariable Poisson regression model to 96 age-site-race/ethnicity strata. Age accounted for 74% of the variation between strata, surveillance site for 6%, race/ethnicity for 3%, and 17% remained unexplained.

CONCLUSION

Variation in estimates derived from a non-random sample of states or counties may not be explained by demographic differences alone. Applying these estimates to other populations requires caution.

摘要

背景

直接从公共卫生监测中估算罕见病的患病率,可能只有在少数几个监测区域才可行。了解观察到的患病率之间的差异,可以为其他地区的患病率估计提供信息。肌肉萎缩症监测、跟踪和研究网络(MD STARnet)在美国选定地区进行基于人群的主要肌肉萎缩症监测。我们从已发表的文献和 MD STARnet 调查中确定了 MD STARnet 内杜氏肌营养不良症和贝克肌营养不良症(DBMD)患病率估计值的变异来源,然后开发了一个逻辑模型,用于表示这些变异来源与估计患病率之间的关系。

结果

确定了 17 个可变性来源,分为四类:(1)监测系统固有的,(2)罕见疾病特有的,(3)基于医疗记录的监测特有的,(4)外推导致的。对于 MD STARnet 测量的不确定性来源,我们估计了每个来源对 DBMD 患病率总方差的贡献。根据我们拟合的逻辑模型,我们对 96 个年龄-地点-种族/民族分层进行了多变量泊松回归模型分析。年龄解释了分层之间 74%的差异,监测地点占 6%,种族/民族占 3%,17%的差异仍无法解释。

结论

从州或县的非随机样本中得出的估计值的差异可能不能仅用人口统计学差异来解释。将这些估计值应用于其他人群需要谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/716d/10031951/f5405cc244c8/13023_2023_2662_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验