Suppr超能文献

量子化学视角下的两个典型的顺磁五配位镍(II)配合物对其 NMR 谱的全新认识。

A Quantum Chemistry View on Two Archetypical Paramagnetic Pentacoordinate Nickel(II) Complexes Offers a Fresh Look on Their NMR Spectra.

机构信息

Department of Chemistry "Ugo Schiff″, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.

Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.

出版信息

Inorg Chem. 2021 Feb 1;60(3):2068-2075. doi: 10.1021/acs.inorgchem.0c03635. Epub 2021 Jan 21.

Abstract

Quantum chemical methods for calculating paramagnetic NMR observables are becoming increasingly accessible and are being included in the inorganic chemistry practice. Here, we test the performance of these methods in the prediction of proton hyperfine shifts of two archetypical high-spin pentacoordinate nickel(II) complexes (NiSAL-MeDPT and NiSAL-HDPT), which, for a variety of reasons, turned out to be perfectly suited to challenge the predictions to the finest level of detail. For NiSAL-MeDPT, new NMR experiments yield an assignment that perfectly matches the calculations. The slightly different hyperfine shifts from the two "halves" of the molecules related by a pseudo- axis, which are experimentally divided into two well-defined spin systems, are also straightforwardly distinguished by the calculations. In the case of NiSAL-HDPT, for which no X-ray structure is available, the quality of the calculations allowed us to refine its structure using as a starting template the structure of NiSAL-MeDPT.

摘要

量子化学方法可用于计算顺磁 NMR 观测值,这些方法正变得越来越容易获得,并被纳入无机化学实践中。在这里,我们测试了这些方法在预测两个典型的高自旋五配位镍(II)配合物(NiSAL-MeDPT 和 NiSAL-HDPT)的质子超精细位移方面的性能,由于各种原因,这些配合物非常适合挑战最详细的预测。对于 NiSAL-MeDPT,新的 NMR 实验得出了与计算完全匹配的结果。通过计算可以很容易地区分由拟轴相关的分子的两个“半体”之间略有不同的超精细位移,这两个“半体”在实验中被分成两个明确的自旋系统。对于 NiSAL-HDPT,由于没有 X 射线结构,计算的质量允许我们使用 NiSAL-MeDPT 的结构作为起始模板来优化其结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e743/7877564/8caab058d633/ic0c03635_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验