Hein Stefan, Theiss Alexander, Di Giovanni Antonio, Stemmer Christian, Schilden Thomas, Schröder Wolfgang, Paredes Pedro, Choudhari Meelan M, Li Fei, Reshotko Eli
German Aerospace Center (DLR), 37073 Göttingen, Germany.
Technical University of Munich, 85748 Garching, Germany.
J Spacecr Rockets. 2019 Mar;56(2):388-404. doi: 10.2514/1.A34247. Epub 2019 Jan 29.
To address the hitherto unknown mechanism of boundary-layer transition on blunt reentry capsules, the role of roughness-induced disturbance growth on a spherical-section forebody is assessed via optimal transient growth theory and direct numerical simulations (DNS). Optimal transient-growth studies have been performed for the blunt capsule experiments at Mach 5.9 in the Hypersonic Ludwieg tube Braunschweig (HLB) of the Technische Universität Braunschweig, which included measurements behind a patch of controlled, distributed micron-sized surface roughness. Transient-growth results for the HLB capsule indicate similar trends as the corresponding numerical data for a Mach 6 experiment in the Actively Controlled Expansion (ACE) facility of the Texas A&M University (TAMU) at a lower Reynolds number. Both configurations indicate a similar dependence on surface temperature ratio, and more important, rather low values of maximum energy gain. DNS are performed for the conditions of the HLB experiment to understand the generation of stationary disturbances by the roughness patch and the accompanying evolution of unsteady perturbations. However, no evidence of either modal or nonmodal disturbance growth in the wake of the roughness patch is found in the DNS data; thus, the physical mechanism underlying the observed onset of transition still remains unknown.
为了探究钝头再入舱边界层转捩迄今未知的机制,通过最优瞬态增长理论和直接数值模拟(DNS)评估了粗糙度诱导的扰动增长在球形头部前体上的作用。针对在布伦瑞克工业大学高超声速Ludwieg管(HLB)中马赫数为5.9的钝头舱实验开展了最优瞬态增长研究,其中包括在一片可控的、分布的微米级表面粗糙度区域后方进行测量。HLB舱的瞬态增长结果显示出与德克萨斯农工大学(TAMU)主动控制膨胀(ACE)设施中马赫数为6的实验在较低雷诺数下相应数值数据相似的趋势。两种构型都显示出对表面温度比有相似的依赖性,更重要的是,最大能量增益值相当低。针对HLB实验的条件进行了DNS,以了解粗糙度区域产生的稳态扰动以及伴随的非稳态扰动的演化。然而,在DNS数据中未发现粗糙度区域尾流中模态或非模态扰动增长的证据;因此,所观察到的转捩起始背后的物理机制仍然未知。