Suppr超能文献

一种基于分层曲线的流形数据分析方法。

A Hierarchical Curve-Based Approach to the Analysis of Manifold Data.

作者信息

Vittert Liberty, Bowman Adrian W, Katina Stanislav

机构信息

School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, Glasgow, G12 8QW, United Kingdom.

Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic.

出版信息

Ann Appl Stat. 2019 Dec 1;13(4):2539-2563. doi: 10.1214/19-AOAS1267. Epub 2019 Nov 28.

Abstract

One of the data structures generated by medical imaging technology is high resolution point clouds representing anatomical surfaces. Stereophotogrammetry and laser scanning are two widely available sources of this kind of data. A standardised surface representation is required to provide a meaningful correspondence across different images as a basis for statistical analysis. Point locations with anatomical definitions, referred to as landmarks, have been the traditional approach. Landmarks can also be taken as the starting point for more general surface representations, often using templates which are warped on to an observed surface by matching landmark positions and subsequent local adjustment of the surface. The aim of the present paper is to provide a new approach which places anatomical curves at the heart of the surface representation and its analysis. Curves provide intermediate structures which capture the principal features of the manifold (surface) of interest through its ridges and valleys. As landmarks are often available these are used as anchoring points, but surface curvature information is the principal guide in estimating the curve locations. The surface patches between these curves are relatively flat and can be represented in a standardised manner by appropriate surface transects to give a complete surface model. This new approach does not require the use of a template, reference sample or any external information to guide the method and, when compared with a surface based approach, the estimation of curves is shown to have improved performance. In addition, examples involving applications to mussel shells and human faces show that the analysis of curve information can deliver more targeted and effective insight than the use of full surface information.

摘要

医学成像技术生成的数据结构之一是表示解剖表面的高分辨率点云。立体摄影测量法和激光扫描是这类数据的两个广泛可用来源。需要一种标准化的表面表示来在不同图像之间提供有意义的对应关系,作为统计分析的基础。具有解剖学定义的点位置,即地标,一直是传统方法。地标也可以作为更通用表面表示的起点,通常使用通过匹配地标位置并随后对表面进行局部调整而扭曲到观察表面上的模板。本文的目的是提供一种新方法,将解剖曲线置于表面表示及其分析的核心。曲线提供了中间结构,通过其脊和谷捕获感兴趣的流形(表面)的主要特征。由于地标通常是可用的,因此将它们用作锚点,但表面曲率信息是估计曲线位置的主要指导。这些曲线之间的表面斑块相对平坦,可以通过适当的表面横断面以标准化方式表示,以给出完整的表面模型。这种新方法不需要使用模板、参考样本或任何外部信息来指导该方法,并且与基于表面的方法相比,曲线估计显示出具有更好的性能。此外,涉及贻贝壳和人脸应用的示例表明,与使用完整表面信息相比,曲线信息分析可以提供更有针对性和更有效的见解。

相似文献

1
A Hierarchical Curve-Based Approach to the Analysis of Manifold Data.一种基于分层曲线的流形数据分析方法。
Ann Appl Stat. 2019 Dec 1;13(4):2539-2563. doi: 10.1214/19-AOAS1267. Epub 2019 Nov 28.
2
Anatomical curve identification.解剖学曲线识别。
Comput Stat Data Anal. 2015 Jun;86:52-64. doi: 10.1016/j.csda.2014.12.007.
5
Automatic Detection and Uncertainty Quantification of Landmarks on Elastic Curves.弹性曲线上地标点的自动检测与不确定性量化
J Am Stat Assoc. 2019;114(527):1002-1017. doi: 10.1080/01621459.2018.1527224. Epub 2019 Mar 20.

引用本文的文献

1
Functional data analysis and visualisation of three-dimensional surface shape.三维表面形状的功能数据分析与可视化
J R Stat Soc Ser C Appl Stat. 2021 Jun;70(3):691-713. doi: 10.1111/rssc.12482. Epub 2021 May 6.

本文引用的文献

3
Anatomical curve identification.解剖学曲线识别。
Comput Stat Data Anal. 2015 Jun;86:52-64. doi: 10.1016/j.csda.2014.12.007.
6
Crest lines for surface segmentation and flattening.用于表面分割和平坦化的嵴线。
IEEE Trans Vis Comput Graph. 2004 Sep-Oct;10(5):536-44. doi: 10.1109/TVCG.2004.24.
7
Shape modelling using Markov random field restoration of point correspondences.
Inf Process Med Imaging. 2003 Jul;18:1-12. doi: 10.1007/978-3-540-45087-0_1.
8
3D analysis of facial morphology.面部形态的三维分析
Am J Med Genet A. 2004 May 1;126A(4):339-48. doi: 10.1002/ajmg.a.20665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验