Suppr超能文献

面部形态的三维分析

3D analysis of facial morphology.

作者信息

Hammond Peter, Hutton Tim J, Allanson Judith E, Campbell Linda E, Hennekam Raoul C M, Holden Sean, Patton Michael A, Shaw Adam, Temple I Karen, Trotter Matthew, Murphy Kieran C, Winter Robin M

机构信息

Eastman Dental Institute, UCL, London, United Kingdom.

出版信息

Am J Med Genet A. 2004 May 1;126A(4):339-48. doi: 10.1002/ajmg.a.20665.

Abstract

Dense surface models can be used to analyze 3D facial morphology by establishing a correspondence of thousands of points across each 3D face image. The models provide dramatic visualizations of 3D face-shape variation with potential for training physicians to recognize the key components of particular syndromes. We demonstrate their use to visualize and recognize shape differences in a collection of 3D face images that includes 280 controls (2 weeks to 56 years of age), 90 individuals with Noonan syndrome (NS) (7 months to 56 years), and 60 individuals with velo-cardio-facial syndrome (VCFS; 3 to 17 years of age). Ten-fold cross-validation testing of discrimination between the three groups was carried out on unseen test examples using five pattern recognition algorithms (nearest mean, C5.0 decision trees, neural networks, logistic regression, and support vector machines). For discriminating between individuals with NS and controls, the best average sensitivity and specificity levels were 92 and 93% for children, 83 and 94% for adults, and 88 and 94% for the children and adults combined. For individuals with VCFS and controls, the best results were 83 and 92%. In a comparison of individuals with NS and individuals with VCFS, a correct identification rate of 95% was achieved for both syndromes. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/jpages/0148-7299/suppmat/index.html.

摘要

密集表面模型可通过在每个3D面部图像上建立数千个点的对应关系来分析3D面部形态。这些模型能显著地可视化3D面部形状变化,具有训练医生识别特定综合征关键组成部分的潜力。我们展示了它们在可视化和识别一组3D面部图像形状差异方面的应用,该组图像包括280名对照者(年龄从2周龄到56岁)、90名努南综合征(NS)患者(年龄从7月龄到56岁)以及60名腭心面综合征(VCFS;年龄从3岁到17岁)患者。使用五种模式识别算法(最近均值、C5.0决策树、神经网络、逻辑回归和支持向量机),对这三组之间的判别进行了十折交叉验证测试,测试对象为未见过的测试样本。对于区分NS患者和对照者,儿童的最佳平均灵敏度和特异度水平分别为92%和93%,成人分别为83%和94%,儿童和成人合并计算时分别为88%和94%。对于区分VCFS患者和对照者,最佳结果分别为83%和92%。在比较NS患者和VCFS患者时,两种综合征的正确识别率均达到95%。本文包含补充材料,可在美国医学遗传学杂志网站http://www.interscience.wiley.com/jpages/0148 - 7299/suppmat/index.html上查看。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验