Yang Jie, Bissett Mark A, Dryfe Robert A W
Department of Chemistry, University of Manchester, M13 9PL, Manchester, UK.
National Graphene Institute, University of Manchester, M13 9PL, Manchester, UK.
ChemSusChem. 2021 Apr 9;14(7):1700-1709. doi: 10.1002/cssc.202002931. Epub 2021 Feb 10.
Aqueous zinc-ion hybrid supercapacitors are a promising energy storage technology, owing to their high safety, low cost, and long-term stability. At present, however, there is a lack of understanding of the potential window and self-discharge of this aqueous energy storage technology. This study concerns a systematic investigation of the potential window of this device by cyclic voltammetry and galvanostatic charge-discharge. Hybrid supercapacitors based on commercial activated carbon (AC) demonstrate a wide and stable potential window (0.2 V to 1.8 V), high specific capacitances (308 F g at 0.5 A g and 110 F g at 30 A g ), good cycling stability (10000 cycles with 95.1 % capacitance retention), and a high energy density (104.8 Wh kg at 383.5 W kg ), based on the active materials. The mechanism involves simultaneous adsorption-desorption of ions on the AC cathode and zinc ion plating/stripping on the Zn anode. This work leads to better understanding of such devices and will aid future development of practical high-performance aqueous zinc-ion hybrid supercapacitors based on commercial carbon materials, thus accelerating the deployment of these hybrid supercapacitors and filling the gap between supercapacitors and batteries.
水系锌离子混合超级电容器是一种很有前景的储能技术,因其具有高安全性、低成本和长期稳定性。然而,目前对于这种水系储能技术的电位窗口和自放电现象还缺乏了解。本研究通过循环伏安法和恒电流充放电对该器件的电位窗口进行了系统研究。基于商业活性炭(AC)的混合超级电容器表现出宽且稳定的电位窗口(0.2 V至1.8 V)、高比电容(在0.5 A g时为308 F g,在30 A g时为110 F g)、良好的循环稳定性(10000次循环,电容保持率为95.1%)以及基于活性材料的高能量密度(在383.5 W kg时为104.8 Wh kg)。其机制涉及离子在AC阴极上的同时吸附-解吸以及锌离子在锌阳极上的电镀/剥离。这项工作有助于更好地理解此类器件,并将有助于未来基于商业碳材料开发实用高性能水系锌离子混合超级电容器,从而加速这些混合超级电容器的应用,并填补超级电容器和电池之间的差距。