Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong , SAR 999077 , China.
Engineering Laboratory of Advanced Energy Materials , Ningbo Institute of Industrial Technology, Chinese Academy of Sciences , Ningbo , Zhejiang 315201 , China.
ACS Nano. 2019 Jul 23;13(7):8275-8283. doi: 10.1021/acsnano.9b03650. Epub 2019 Jun 21.
Degradable energy storage systems (ESSs) have been proposed to tackle increasing e-wastes such as heavy metals and toxic organic electrolytes. However, currently reported degradable ESSs are scarce because it is very difficult to make all of the electrochemical components degradable as they must be stable for energy storage. Here, we designed an all-component degradable and rechargeable Zn-MXene capacitor with outstanding anti-self-discharge function using zinc nanosheets and TiC MXene as electrodes. The whole capacitor can retain ca. 82.5% of the capacitance after 1000 cycles and be totally degraded within 7.25 days, comprehensively surpassing the current degradable supercapacitors (120 days, 400 cycles) and batteries (19 days, 0-20 cycles). In addition, while supercapacitors are notorious for intensive self-discharge, the Zn-MXene capacitor demonstrated the lowest self-discharge rate of 6.4 mV h, better than all the previous supercapacitors with specifically designed anti-self-discharge components including electrodes (>300 mV h), electrolytes (12-50 mV h), and separators (20-400 mV h). This is illustrated by the as-proposed "static electricity-immune mechanism" which refers to breaking the electrostatic adsorption. This Zn-MXene capacitor represents a great advance in degradable rechargeable ESSs and provides a strategy to fundamentally overcome the self-discharge problem encountered by supercapacitors.
可降解储能系统 (ESS) 被提出用于解决日益增加的电子废物,如重金属和有毒有机电解质。然而,目前报道的可降解 ESS 很少,因为要使所有电化学组件都可降解非常困难,因为它们必须稳定以进行储能。在这里,我们设计了一种全组件可降解和可再充电的 Zn-MXene 电容器,具有出色的抗自放电功能,使用锌纳米片和 TiC MXene 作为电极。整个电容器在 1000 次循环后可保留约 82.5%的电容,并且在 7.25 天内完全降解,全面超过了当前的可降解超级电容器(120 天,400 次循环)和电池(19 天,0-20 次循环)。此外,虽然超级电容器以强烈的自放电而臭名昭著,但 Zn-MXene 电容器表现出最低的自放电率为 6.4 mV h,优于所有以前具有专门设计的抗自放电组件的超级电容器,包括电极(>300 mV h)、电解质(12-50 mV h)和隔板(20-400 mV h)。这是由所提出的“静电免疫机制”来解释的,这是指打破静电吸附。这种 Zn-MXene 电容器代表了可降解可再充电 ESS 的重大进展,并提供了一种从根本上克服超级电容器自放电问题的策略。