Bahadur Rohan, Wijerathne Binodhya, Vinu Ajayan
College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, 4000, QLD, Australia.
ChemSusChem. 2024 Dec 20;17(24):e202400999. doi: 10.1002/cssc.202400999. Epub 2024 Aug 26.
The use of nanoporous carbon for energy storage has seen a significant rise due to its exciting properties such as high surface area, hierarchical porosity and exceptional electrochemical properties. These unique advantages of exceptional surface and electrochemical properties of these porous carbon nanostructures can be coupled with the individual doping of heteroatoms such as S, N, O, and B for achieving high energy storage capacity and stability. Herein, we integrated the synthesis of carbon nitride (CN) and borocarbonitride (BCN) with solid state activation for introducing multiple heteroatoms (B, N, O, and S) onto the nanoporous carbon frameworks. The produced materials exhibit abundance of micro and mesoporosity, a high surface area of 2909 m g, and a pore volume of 0.87 cm g. Also, it offers an exceptional capacitance of 233.5 F g at 0.5 A g with 3 M KOH as electrolyte. Further, the optimised material was explored as cathode in zinc ion capacitor which delivers an energy and power density of 50.4 Wh kg and 400 W kg respectively in addition to high cyclability. Studies on the formation of the intermediate phases during charging/discharging of the cell through ex situ characterization result in some useful insights into the stability of ZIC.
由于纳米多孔碳具有诸如高表面积、分级孔隙率和优异的电化学性能等令人兴奋的特性,其在能量存储领域的应用显著增加。这些多孔碳纳米结构独特的表面和电化学性能优势,可以与硫、氮、氧和硼等杂原子的单独掺杂相结合,以实现高能量存储容量和稳定性。在此,我们将氮化碳(CN)和硼碳氮化物(BCN)的合成与固态活化相结合,以便将多种杂原子(硼、氮、氧和硫)引入到纳米多孔碳骨架上。所制备的材料表现出丰富的微孔和介孔,高表面积为2909 m²/g,孔体积为0.87 cm³/g。此外,以3 M氢氧化钾为电解质时,在0.5 A/g的电流密度下其电容高达233.5 F/g。进一步地,优化后的材料被用作锌离子电容器的阴极,除了具有高循环稳定性外,还分别提供了50.4 Wh/kg的能量密度和400 W/kg的功率密度。通过非原位表征对电池充放电过程中中间相形成的研究,为锌离子电容器的稳定性提供了一些有用的见解。