Suppr超能文献

通过硒化在钴铁层状双氢氧化物中引入和诱导氧空位作为电催化析氢和析氧反应的预催化剂

Enabling and Inducing Oxygen Vacancies in Cobalt Iron Layer Double Hydroxide via Selenization as Precatalysts for Electrocatalytic Hydrogen and Oxygen Evolution Reactions.

作者信息

Karmakar Arun, Karthick Kannimuthu, Kumaravel Sangeetha, Sankar Selvasundarasekar Sam, Kundu Subrata

机构信息

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.

出版信息

Inorg Chem. 2021 Feb 1;60(3):2023-2036. doi: 10.1021/acs.inorgchem.0c03514. Epub 2021 Jan 22.

Abstract

Production of hydrogen by water electrolysis is an environment-friendly method and comparatively greener than other methods of hydrogen production such as stream reforming carbon, hydrolysis of metal hydride, etc. However, sluggish kinetics of the individual half-cell reactions hinders the large-scale production of hydrogen. To minimize this disadvantage, finding an appropriate, competent, and low-cost catalyst has attracted attention worldwide. Layer double hydroxide (LDH)-based materials are promising candidates for oxygen evolution reaction (OER) but not fruitful and their hydrogen evolution reaction (HER) activity is very poor, due to the lack of ionic conductivity. The inclusion of chalcogenide and generation of inherent oxygen vacancies in the lattice of LDH lead to improvement of both OER and HER activities. The presence of rich oxygen vacancies was confirmed using both the Tauc plot (1.11 eV, vacancy induction) and the photoluminescence study (peak at 426 nm, photoregeneration of oxygen). In this work, we have developed vacancy-enriched, selenized CoFe-LDH by the consequent wet-chemical and hydrothermal routes, respectively, which was used for OER and HER applications in 1 M KOH and 0.5 M HSO electrolytes, respectively. For OER, the catalyst required only 251 mV overpotential to reach a 50 mA/cm current density with a Tafel slope value of 47 mV/dec. For HER, the catalyst demanded only 222 mV overpotential for reaching a 50 mA/cm current density with a Tafel slope value of 126 mV/dec. Hence, generating oxygen vacancies leads to several advantages from enhancing the exposed active sites to high probability in obtaining electrocatalytically active species and subsequent assistance in oxygen and hydrogen molecule cleavage.

摘要

通过水电解制氢是一种环境友好型方法,相较于其他制氢方法,如碳蒸汽重整、金属氢化物水解等,它更为绿色环保。然而,单个半电池反应缓慢的动力学阻碍了大规模制氢。为了尽量减少这一缺点,寻找合适、高效且低成本的催化剂已引起全球关注。基于层状双氢氧化物(LDH)的材料是析氧反应(OER)的有前景的候选材料,但由于缺乏离子导电性,成效不佳且其析氢反应(HER)活性很差。在LDH晶格中引入硫族化物并产生固有氧空位可提高OER和HER的活性。通过Tauc图(1.11 eV,空位诱导)和光致发光研究(426 nm处的峰,氧的光再生)均证实了丰富氧空位的存在。在这项工作中,我们分别通过连续的湿化学和水热路线制备了富含空位的硒化CoFe-LDH,其分别用于1 M KOH和0.5 M H₂SO₄电解质中的OER和HER应用。对于OER,该催化剂仅需251 mV的过电位即可达到50 mA/cm²的电流密度,塔菲尔斜率值为47 mV/dec。对于HER,该催化剂仅需222 mV的过电位即可达到50 mA/cm²的电流密度,塔菲尔斜率值为126 mV/dec。因此,产生氧空位带来了诸多优势,从增加暴露的活性位点到更有可能获得电催化活性物种,并随后有助于氧分子和氢分子的裂解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验