Mohamed Mohamed Jaffer Sadiq, Gondal Mohammed Ashraf, Hassan Muhammad, Almessiere Munirah Abdullah, Tahir Asif Ali, Roy Anurag
Laser Research Group, Department of Physics & Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
K. A. CARE Energy Research and Innovation Center, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
ACS Omega. 2023 Sep 11;8(37):33332-33341. doi: 10.1021/acsomega.3c02516. eCollection 2023 Sep 19.
Offshore hydrogen production through water electrolysis presents significant technical and economic challenges. Achieving an efficient hydrogen evolution reaction (HER) in alkaline and natural seawater environments remains daunting due to the sluggish kinetics of water dissociation. To address this issue, we synthesized electrocatalytic WO@CdS nanocomposites (WCSNCs) using ultrasonic-assisted laser irradiation. The synthesized WCSNCs with varying CdS contents were thoroughly characterized to investigate their structural, morphological, and electrochemical properties. Among the samples tested, the WCSNCs with 20 wt % CdS in WO (W@S-20%) exhibited superior electrocatalytic performance for hydrogen evolution in a 1 M KOH solution. Specifically, the W@S-20% catalyst demonstrated an overpotential of 0.191 V at a current density of -10 mA/cm and a Tafel slope of 61.9 mV/dec. The W@S-20% catalysts demonstrated outstanding stability and durability, maintaining their performance after 24 h and up to 1000 CV cycles. Notably, when subjected to natural seawater electrolysis, the W@S-20% catalysts outperformed in terms of electrocatalytic HER activity and stability. The remarkable performance enhancement of the prepared electrocatalyst can be attributed to the combined effect of sulfur vacancies in CdS and oxygen vacancies in WO. These vacancies promote the electrochemically active surface area, enhance the rate of charge separation and transfer, increase the number of electrocatalytic active sites, and accelerate the HER process in alkaline and natural seawater environments.
通过水电解进行海上制氢面临着重大的技术和经济挑战。由于水离解动力学缓慢,在碱性和天然海水环境中实现高效析氢反应(HER)仍然是一项艰巨的任务。为了解决这个问题,我们使用超声辅助激光辐照合成了电催化WO@CdS纳米复合材料(WCSNCs)。对合成的具有不同CdS含量的WCSNCs进行了全面表征,以研究其结构、形态和电化学性质。在所测试的样品中,WO中CdS含量为20 wt%的WCSNCs(W@S-20%)在1 M KOH溶液中表现出优异的析氢电催化性能。具体而言,W@S-20%催化剂在电流密度为-10 mA/cm²时的过电位为0.191 V,塔菲尔斜率为61.9 mV/dec。W@S-20%催化剂表现出出色的稳定性和耐久性,在24小时和多达1000次循环伏安(CV)循环后仍保持其性能。值得注意的是,在进行天然海水电解时,W@S-20%催化剂在电催化HER活性和稳定性方面表现更优。所制备的电催化剂性能的显著提高可归因于CdS中的硫空位和WO中的氧空位的协同作用。这些空位促进了电化学活性表面积,提高了电荷分离和转移速率,增加了电催化活性位点的数量,并加速了碱性和天然海水环境中的HER过程。