Suppr超能文献

Collective mode Brownian dynamics: A method for fast relaxation of statistical ensembles.

作者信息

Silmore Kevin S, Swan James W

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

J Chem Phys. 2020 Mar 7;152(9):094104. doi: 10.1063/1.5129648.

Abstract

Sampling equilibrium configurations of correlated systems of particles with long relaxation times (e.g., polymeric solutions) using conventional molecular dynamics and Monte Carlo methods can be challenging. This is especially true for systems with complicated, extended bond network topologies and other interactions that make the use and design of specialized relaxation protocols infeasible. We introduce a method based on Brownian dynamics simulations that can reduce the computational time it takes to reach equilibrium and draw decorrelated samples. Importantly, the method is completely agnostic to the particle configuration and the specifics of interparticle forces. In particular, we develop a mobility matrix that excites non-local, collective motion of N particles and can be computed efficiently in O(N) time. Particle motion in this scheme is computed by integrating the overdamped Langevin equation with an Euler-Maruyama scheme, in which Brownian displacements are drawn efficiently using a low-rank representation of the mobility matrix in position and wave space. We demonstrate the efficacy of the method with various examples from the realm of soft condensed matter and release a massively parallel implementation of the code as a plugin for the open-source package HOOMD-blue [J. A. Anderson et al., J. Comput. Phys. 227, 5342 (2008) and J. Glaser et al., Comput. Phys. Commun. 192, 97 (2015)] which runs on graphics processing units.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验