Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany.
J Chem Phys. 2021 Oct 7;155(13):134107. doi: 10.1063/5.0062396.
A framework for performant Brownian Dynamics (BD) many-body simulations with adaptive timestepping is presented. Contrary to the Euler-Maruyama scheme in common non-adaptive BD, we employ an embedded Heun-Euler integrator for the propagation of the overdamped coupled Langevin equations of motion. This enables the derivation of a local error estimate and the formulation of criteria for the acceptance or rejection of trial steps and for the control of optimal stepsize. Introducing erroneous bias in the random forces is avoided by rejection sampling with memory due to Rackauckas and Nie, which makes use of the Brownian bridge theorem and guarantees the correct generation of a specified random process even when rejecting trial steps. For test cases of Lennard-Jones fluids in bulk and in confinement, it is shown that adaptive BD solves performance and stability issues of conventional BD, already outperforming the latter even in standard situations. We expect this novel computational approach to BD to be especially helpful in long-time simulations of complex systems, e.g., in non-equilibrium, where concurrent slow and fast processes occur.
本文提出了一种用于高效布朗动力学(BD)多体模拟的自适应时间步长框架。与常见的非自适应 BD 中的 Euler-Maruyama 方案不同,我们采用嵌入式 Heun-Euler 积分器来传播过阻尼耦合朗之万运动方程。这使得能够推导出局部误差估计,并为试验步的接受或拒绝以及最优步长的控制制定准则。通过 Rackauckas 和 Nie 的带记忆的拒绝采样,可以避免在随机力中引入错误的偏差,该方法利用布朗桥定理,并保证即使拒绝试验步,也能正确生成指定的随机过程。对于大块和受限 Lennard-Jones 流体的测试案例,表明自适应 BD 解决了传统 BD 的性能和稳定性问题,即使在标准情况下,也已经优于后者。我们期望这种新的 BD 计算方法对于复杂系统的长时间模拟特别有帮助,例如在非平衡状态下,其中同时发生缓慢和快速的过程。