Je Soong-Geun, Thian Dickson, Chen Xiaoye, Huang Lisen, Jung Dae-Han, Chao Weilun, Lee Ki-Suk, Hong Jung-Il, Soumyanarayanan Anjan, Im Mi-Young
Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
Nano Lett. 2021 Feb 10;21(3):1253-1259. doi: 10.1021/acs.nanolett.0c03686. Epub 2021 Jan 22.
Controllable writing and deleting of nanoscale magnetic skyrmions are key requirements for their use as information carriers for next-generation memory and computing technologies. While several schemes have been proposed, they require complex fabrication techniques or precisely tailored electrical inputs, which limits their long-term scalability. Here, we demonstrate an alternative approach for writing and deleting skyrmions using conventional electrical pulses within a simple, two-terminal wire geometry. X-ray microscopy experiments and micromagnetic simulations establish the observed skyrmion creation and annihilation as arising from Joule heating and Oersted field effects of the current pulses, respectively. The unique characteristics of these writing and deleting schemes, such as spatial and temporal selectivity, together with the simplicity of the two-terminal device architecture, provide a flexible and scalable route to the viable applications of skyrmions.
对纳米级磁性斯格明子进行可控的写入和删除,是将其用作下一代存储器和计算技术信息载体的关键要求。虽然已经提出了几种方案,但它们需要复杂的制造技术或精确定制的电输入,这限制了它们的长期可扩展性。在这里,我们展示了一种在简单的双终端线几何结构中使用传统电脉冲写入和删除斯格明子的替代方法。X射线显微镜实验和微磁模拟分别确定,观察到的斯格明子的产生和湮灭分别是由电流脉冲的焦耳热效应和奥斯特场效应引起的。这些写入和删除方案的独特特性,如空间和时间选择性,以及双终端器件架构的简单性,为斯格明子的可行应用提供了一条灵活且可扩展的途径。