Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
PLoS Pathog. 2021 Jan 22;17(1):e1009227. doi: 10.1371/journal.ppat.1009227. eCollection 2021 Jan.
Infections with Gram-negative bacteria form an increasing risk for human health due to antibiotic resistance. Our immune system contains various antimicrobial proteins that can degrade the bacterial cell envelope. However, many of these proteins do not function on Gram-negative bacteria, because the impermeable outer membrane of these bacteria prevents such components from reaching their targets. Here we show that complement-dependent formation of Membrane Attack Complex (MAC) pores permeabilizes this barrier, allowing antimicrobial proteins to cross the outer membrane and exert their antimicrobial function. Specifically, we demonstrate that MAC-dependent outer membrane damage enables human lysozyme to degrade the cell wall of E. coli. Using flow cytometry and confocal microscopy, we show that the combination of MAC pores and lysozyme triggers effective E. coli cell wall degradation in human serum, thereby altering the bacterial cell morphology from rod-shaped to spherical. Completely assembled MAC pores are required to sensitize E. coli to the antimicrobial actions of lysozyme and other immune factors, such as Human Group IIA-secreted Phospholipase A2. Next to these effects in a serum environment, we observed that the MAC also sensitizes E. coli to more efficient degradation and killing inside human neutrophils. Altogether, this study serves as a proof of principle on how different players of the human immune system can work together to degrade the complex cell envelope of Gram-negative bacteria. This knowledge may facilitate the development of new antimicrobials that could stimulate or work synergistically with the immune system.
由于抗生素耐药性的出现,革兰氏阴性菌感染对人类健康构成的威胁日益增加。我们的免疫系统中含有多种能够降解细菌细胞包膜的抗菌蛋白。然而,由于这些细菌的不透性外膜阻止了这些成分到达其靶标,许多此类蛋白对革兰氏阴性菌不起作用。在这里,我们表明补体依赖性膜攻击复合物(MAC)孔的形成可使这种屏障穿孔,从而使抗菌蛋白能够穿过外膜并发挥其抗菌功能。具体来说,我们证明 MAC 依赖性的外膜损伤使人类溶菌酶能够降解大肠杆菌的细胞壁。通过流式细胞术和共聚焦显微镜,我们表明 MAC 孔和溶菌酶的组合在人血清中可有效降解大肠杆菌细胞壁,从而使细菌细胞形态从杆状变为球形。完全组装的 MAC 孔可使大肠杆菌对溶菌酶和其他免疫因子(如人类 IIA 组分泌的磷脂酶 A2)的抗菌作用敏感。除了在血清环境中的这些作用外,我们还观察到 MAC 还可使大肠杆菌在人中性粒细胞内更有效地降解和杀伤。总而言之,这项研究证明了人类免疫系统中的不同成分如何协同作用来降解革兰氏阴性菌的复杂细胞包膜。这一知识可能有助于开发新的抗菌药物,这些药物可以刺激或与免疫系统协同作用。