Pizzochero Michele, Kaxiras Efthimios
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
J Phys Chem Lett. 2021 Feb 4;12(4):1214-1219. doi: 10.1021/acs.jpclett.0c03677. Epub 2021 Jan 22.
Magnetic carbon nanostructures are currently under scrutiny for a wide spectrum of applications. Here, we theoretically investigate armchair graphene nanoribbons patterned with asymmetric edge extensions consisting of laterally fused naphtho groups, as recently fabricated via on-surface synthesis. We show that an individual edge extension acts as a spin- center and develops a sizable spin-polarization of the conductance around the band edges. The Heisenberg exchange coupling between a pair of edge extensions is dictated by the position of the second naphtho group in the carbon backbone, thus enabling ferromagnetic, antiferromagnetic, or nonmagnetic states. The periodic arrangement of edge extensions yields full spin-polarization at the band extrema, and the accompanying ferromagnetic ground state can be driven into nonmagnetic or antiferromagnetic phases through external stimuli. Overall, our work reveals a precise tunability of the π-magnetism in graphene nanoribbons induced by naphtho groups, thereby establishing these one-dimensional architectures as suitable platforms for logic spintronics.
磁性碳纳米结构目前正在接受广泛应用的审查。在此,我们从理论上研究了通过表面合成法最近制备的、具有由横向融合萘基团组成的不对称边缘延伸图案的扶手椅型石墨烯纳米带。我们表明,单个边缘延伸充当自旋中心,并在能带边缘周围产生可观的电导自旋极化。一对边缘延伸之间的海森堡交换耦合由碳骨架中第二个萘基团的位置决定,从而实现铁磁、反铁磁或非磁状态。边缘延伸的周期性排列在能带极值处产生完全自旋极化,并且伴随的铁磁基态可以通过外部刺激被驱动到非磁或反铁磁相。总体而言,我们的工作揭示了由萘基团诱导的石墨烯纳米带中π磁性的精确可调性,从而将这些一维结构确立为逻辑自旋电子学的合适平台。