文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于自动磁共振成像的神经胶质瘤分级、异柠檬酸脱氢酶(IDH)突变及1p19q共缺失分割与预测流程

Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma.

作者信息

Decuyper Milan, Bonte Stijn, Deblaere Karel, Van Holen Roel

机构信息

Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium.

Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium.

出版信息

Comput Med Imaging Graph. 2021 Mar;88:101831. doi: 10.1016/j.compmedimag.2020.101831. Epub 2020 Nov 27.


DOI:10.1016/j.compmedimag.2020.101831
PMID:33482430
Abstract

In the WHO glioma classification guidelines grade (glioblastoma versus lower-grade glioma), IDH mutation and 1p/19q co-deletion status play a central role as they are important markers for prognosis and optimal therapy planning. Currently, diagnosis requires invasive surgical procedures. Therefore, we propose an automatic segmentation and classification pipeline based on routinely acquired pre-operative MRI (T1, T1 postcontrast, T2 and/or FLAIR). A 3D U-Net was designed for segmentation and trained on the BraTS 2019 training dataset. After segmentation, the 3D tumor region of interest is extracted from the MRI and fed into a CNN to simultaneously predict grade, IDH mutation and 1p19q co-deletion. Multi-task learning allowed to handle missing labels and train one network on a large dataset of 628 patients, collected from The Cancer Imaging Archive and BraTS databases. Additionally, the network was validated on an independent dataset of 110 patients retrospectively acquired at the Ghent University Hospital (GUH). Segmentation performance calculated on the BraTS validation set shows an average whole tumor dice score of 90% and increased robustness to missing image modalities by randomly excluding input MRI during training. Classification area under the curve scores are 93%, 94% and 82% on the TCIA test data and 94%, 86% and 87% on the GUH data for grade, IDH and 1p19q status respectively. We developed a fast, automatic pipeline to segment glioma and accurately predict important (molecular) markers based on pre-therapy MRI.

摘要

在世界卫生组织的胶质瘤分类指南(胶质母细胞瘤与低级别胶质瘤)中,异柠檬酸脱氢酶(IDH)突变和1p/19q共缺失状态起着核心作用,因为它们是预后和优化治疗方案规划的重要标志物。目前,诊断需要侵入性手术操作。因此,我们提出了一种基于常规获取的术前磁共振成像(MRI)(T1加权像、T1加权增强像、T2加权像和/或液体衰减反转恢复序列像)的自动分割和分类流程。设计了一个3D U-Net用于分割,并在BraTS 2019训练数据集上进行训练。分割后,从MRI中提取3D肿瘤感兴趣区域,并将其输入到一个卷积神经网络(CNN)中,以同时预测级别、IDH突变和1p19q共缺失。多任务学习能够处理缺失标签的情况,并在从癌症成像存档库和BraTS数据库收集的628例患者的大型数据集中训练一个网络。此外,该网络在根特大学医院(GUH)回顾性获取的110例患者的独立数据集上进行了验证。在BraTS验证集上计算的分割性能显示,整个肿瘤的平均骰子系数得分达到90%,并且通过在训练期间随机排除输入MRI,提高了对缺失图像模态的鲁棒性。在TCIA测试数据上,级别、IDH和1p19q状态的曲线下面积分类得分分别为93%、94%和82%,在GUH数据上分别为94%、86%和87%。我们开发了一种快速、自动的流程来分割胶质瘤,并基于治疗前的MRI准确预测重要的(分子)标志物。

相似文献

[1]
Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma.

Comput Med Imaging Graph. 2021-3

[2]
Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas.

J Neurooncol. 2019-1-19

[3]
A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas.

Neuro Oncol. 2020-3-5

[4]
The Diagnostic Value of Conventional MRI and CT Features in the Identification of the IDH1-Mutant and 1p/19q Co-Deletion in WHO Grade II Gliomas.

Acad Radiol. 2021-7

[5]
Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II-III diffuse gliomas.

J Neurooncol. 2017-8

[6]
The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance.

Neurosurg Focus. 2019-12-1

[7]
Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion.

J Neurooncol. 2016-9

[8]
Reproducible imaging-based prediction of molecular subtype and risk stratification of gliomas across different experience levels using a structured reporting system.

Eur Radiol. 2021-10

[9]
Two-Stage Training Framework Using Multicontrast MRI Radiomics for Mutation Status Prediction in Glioma.

Radiol Artif Intell. 2024-7

[10]
Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics.

Neuro Oncol. 2021-2-25

引用本文的文献

[1]
AI-Driven Innovations in Neuroradiology and Neurosurgery: Scoping Review of Current Evidence and Future Directions.

Cancers (Basel). 2025-8-11

[2]
Bridging the clinical gap: Confidence informed IDH prediction in brain gliomas using MRI and deep learning.

Neurooncol Adv. 2025-7-25

[3]
Diagnostic performance of deep learning for predicting glioma isocitrate dehydrogenase and 1p/19q co-deletion in MRI: a systematic review and meta-analysis.

Eur Radiol. 2025-8-16

[4]
A multitask framework based on CA-EfficientNetV2 for the prediction of glioma molecular biomarkers.

Front Neurol. 2025-7-18

[5]
Zinc finger protein 800 (ZNF800) promotes proliferation and migration of lower-grade glioma and is associated with immune infiltration.

PLoS One. 2025-7-11

[6]
MRI-derived deep learning models for predicting 1p/19q codeletion status in glioma patients: a systematic review and meta-analysis of diagnostic test accuracy studies.

Neuroradiology. 2025-5-15

[7]
MRI transformer deep learning and radiomics for predicting IDH wild type TERT promoter mutant gliomas.

NPJ Precis Oncol. 2025-3-27

[8]
Glioma subtype prediction based on radiomics of tumor and peritumoral edema under automatic segmentation.

Sci Rep. 2024-11-10

[9]
Non-invasive classification of IDH mutation status of gliomas from multi-modal MRI using a 3D convolutional neural network.

Proc SPIE Int Soc Opt Eng. 2023-2

[10]
Radiogenomics: bridging the gap between imaging and genomics for precision oncology.

MedComm (2020). 2024-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索