文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

弥合临床差距:利用磁共振成像(MRI)和深度学习实现脑胶质瘤中异柠檬酸脱氢酶(IDH)预测的信心告知

Bridging the clinical gap: Confidence informed IDH prediction in brain gliomas using MRI and deep learning.

作者信息

Bangalore Yogananda Chandan Ganesh, Truong Nghi C D, Wagner Benjamin C, Xi Yin, Bowerman Jason, Reddy Divya D, Holcomb James M, Saadat Niloufar, Hatanpaa Kimmo J, Patel Toral R, Fei Baowei, Lee Matthew D, Jain Rajan, Bruce Richard J, Madhuranthakam Ananth J, Pinho Marco C, Maldjian Joseph A

机构信息

Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA.

Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Neurooncol Adv. 2025 Jul 25;7(1):vdaf142. doi: 10.1093/noajnl/vdaf142. eCollection 2025 Jan-Dec.


DOI:10.1093/noajnl/vdaf142
PMID:40842645
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12365901/
Abstract

BACKGROUND: The isocitrate dehydrogenase (IDH) mutation status is a key molecular marker in diagnosing and treating brain tumors. Currently, it is determined via invasive tissue biopsy. Recent advances in deep learning (DL) have offered promising non-invasive alternatives for determining IDH status. However, their clinical translation is hindered by a significant gap between DL predictions and their clinical applicability. The limited transparency of many DL-networks and inadequate evaluation metrics hinders trust and adoption, as clinicians require clear and validated insights for determining IDH status. These challenges highlight the need for robust validation and measures of predictive reliability to make DL-predictions clinically actionable. METHODS: We developed a unique approach for non-invasive prediction of IDH status using MRI. We combine a voxel-wise-segmentation network(MC-net) with Bayesian logistic regression (BLR) to provide an IDH status and estimate confidence scores. We utilized a comprehensive dataset of 2,481 glioma cases from eight institutions. RESULTS: Our framework(MC-net + BLR) demonstrated robust performance achieving 96.4% and 95.1% classification accuracies on diverse databases, with an AUC of 0.98. The BLR was implemented exclusively on held-out test data, ensuring that the derived confidence scores are independent of the training or validation phases. The derived confidence scores showed a low Brier score of 0.0125, highlighting its superior calibration and uncertainty quantification. CONCLUSION: The developed framework provides an IDH status and a confidence score, offering clinicians an additional layer of assurance in prediction reliability. It bridges the gap between high-performing DL models and their clinical applicability by addressing the challenges in prediction reliability. Our framework is a significant advancement in non-invasive determination of IDH-status and confidence-informed therapeutic decision-making in neuro-oncology.

摘要

背景:异柠檬酸脱氢酶(IDH)突变状态是脑肿瘤诊断和治疗中的关键分子标志物。目前,它是通过侵入性组织活检来确定的。深度学习(DL)的最新进展为确定IDH状态提供了有前景的非侵入性替代方法。然而,DL预测与其临床适用性之间的巨大差距阻碍了它们的临床转化。许多DL网络的透明度有限以及评估指标不足,阻碍了临床医生对其的信任和采用,因为临床医生需要清晰且经过验证的见解来确定IDH状态。这些挑战凸显了进行有力验证和预测可靠性测量以使DL预测具有临床可操作性的必要性。 方法:我们开发了一种利用磁共振成像(MRI)对IDH状态进行非侵入性预测的独特方法。我们将体素级分割网络(MC-net)与贝叶斯逻辑回归(BLR)相结合,以提供IDH状态并估计置信度分数。我们使用了来自八个机构的2481例胶质瘤病例的综合数据集。 结果:我们的框架(MC-net + BLR)表现出强大的性能,在不同数据库上实现了96.4%和95.1%的分类准确率,曲线下面积(AUC)为0.98。BLR仅在留出的测试数据上实施,确保得出的置信度分数独立于训练或验证阶段。得出的置信度分数显示出较低的布里尔分数(Brier score)为0.0125,突出了其卓越的校准和不确定性量化。 结论:所开发的框架提供了IDH状态和置信度分数,为临床医生在预测可靠性方面提供了额外的保证。它通过解决预测可靠性方面的挑战,弥合了高性能DL模型与其临床适用性之间的差距。我们的框架在神经肿瘤学中IDH状态的非侵入性确定和基于置信度的治疗决策方面是一项重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/12365901/a267b80c2d17/vdaf142_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/12365901/60acf9245cff/vdaf142_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/12365901/818d663fde3b/vdaf142_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/12365901/a267b80c2d17/vdaf142_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/12365901/60acf9245cff/vdaf142_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/12365901/818d663fde3b/vdaf142_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/12365901/a267b80c2d17/vdaf142_fig3.jpg

相似文献

[1]
Bridging the clinical gap: Confidence informed IDH prediction in brain gliomas using MRI and deep learning.

Neurooncol Adv. 2025-7-25

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[4]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[5]
Development of Machine Learning-based Algorithms to Predict the 2- and 5-year Risk of TKA After Tibial Plateau Fracture Treatment.

Clin Orthop Relat Res. 2025-3-12

[6]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[7]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[8]
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.

Cochrane Database Syst Rev. 2022-3-2

[9]
Diagnostic performance of deep learning for predicting glioma isocitrate dehydrogenase and 1p/19q co-deletion in MRI: a systematic review and meta-analysis.

Eur Radiol. 2025-8-16

[10]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

本文引用的文献

[1]
Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach.

BMC Med Imaging. 2024-5-3

[2]
MRI-Based Deep Learning Method for Classification of IDH Mutation Status.

Bioengineering (Basel). 2023-9-5

[3]
Deep-learning and conventional radiomics to predict genotyping status based on magnetic resonance imaging data in adult diffuse glioma.

Front Oncol. 2023-8-30

[4]
MRI-based classification of IDH mutation and 1p/19q codeletion status of gliomas using a 2.5D hybrid multi-task convolutional neural network.

Neurooncol Adv. 2023-3-5

[5]
Stalled oligodendrocyte differentiation in IDH-mutant gliomas.

Genome Med. 2023-4-13

[6]
MRI-Based Radiomics Combined with Deep Learning for Distinguishing IDH-Mutant WHO Grade 4 Astrocytomas from IDH-Wild-Type Glioblastomas.

Cancers (Basel). 2023-2-2

[7]
The University of California San Francisco Preoperative Diffuse Glioma MRI Dataset.

Radiol Artif Intell. 2022-10-5

[8]
Swin Transformer Improves the IDH Mutation Status Prediction of Gliomas Free of MRI-Based Tumor Segmentation.

J Clin Med. 2022-8-8

[9]
The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics.

Sci Data. 2022-7-29

[10]
A survey on the interpretability of deep learning in medical diagnosis.

Multimed Syst. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索