Suppr超能文献

基于序列分析的流感疫苗效力的计算机预测。

In silico prediction of influenza vaccine effectiveness by sequence analysis.

机构信息

JC School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region; CUHK Shenzhen Research Institute, Shenzhen, China.

Department of Pediatrics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region; CUHK-UMCU Joint Research Laboratory of Respiratory Virus & Immunobiology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region.

出版信息

Vaccine. 2021 Feb 12;39(7):1030-1034. doi: 10.1016/j.vaccine.2021.01.006. Epub 2021 Jan 19.

Abstract

The effectiveness of seasonal influenza vaccines varies with the matching of vaccine strains to circulating strains. Based on the genetic distance of hemagglutinin and neuraminidase gene of the influenza viruses to vaccine strains, we statistically quantified the relationship between the genetic mismatch and vaccine effectiveness (VE) for influenza A/H1N1pdm09, A/H3N2 and B. We also proposed a systematic approach to integrate multiple genes and influenza types for overall VE estimation. Evident linear relationships were identified and validated in independent data. The modelling framework may enable in silico prediction for VE on a real-time basis and inform the influenza vaccine selection strategy.

摘要

季节性流感疫苗的有效性因疫苗株与流行株的匹配程度而异。基于流感病毒血凝素和神经氨酸酶基因与疫苗株的遗传距离,我们对甲型 H1N1pdm09、甲型 H3N2 和乙型流感病毒的遗传错配与疫苗有效性 (VE) 之间的关系进行了统计学量化。我们还提出了一种系统方法,将多个基因和流感类型整合在一起进行总体 VE 估计。在独立数据中验证了明显的线性关系。该建模框架可实现基于实时数据的 VE 虚拟预测,并为流感疫苗选择策略提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验