Suppr超能文献

使用机器学习方法预测牙科患者90天全因再次住院情况。

Predicting all-cause 90-day hospital readmission for dental patients using machine learning methods.

作者信息

Li Wei, Lipsky Martin S, Hon Eric S, Su Weicong, Su Sharon, He Yao, Holubkov Richard, Sheng Xiaoming, Hung Man

机构信息

University of Utah School of Medicine, Salt Lake City, UT, USA.

Roseman University of Health Sciences College of Dental Medicine, South Jordan, UT, USA.

出版信息

BDJ Open. 2021 Jan 22;7(1):1. doi: 10.1038/s41405-021-00057-6.

Abstract

INTRODUCTION

Hospital readmission rates are an indicator of the health care quality provided by hospitals. Applying machine learning (ML) to a hospital readmission database offers the potential to identify patients at the highest risk for readmission. However, few studies applied ML methods to predict hospital readmission. This study sought to assess ML as a tool to develop prediction models for all-cause 90-day hospital readmission for dental patients.

METHODS

Using the 2013 Nationwide Readmissions Database (NRD), the study identified 9260 cases for all-cause 90-day index admission for dental patients. Five ML classification algorithms including decision tree, logistic regression, support vector machine, k-nearest neighbors, and artificial neural network (ANN) were implemented to build predictive models. The model performance was estimated and compared by using area under the receiver operating characteristic curve (AUC), and accuracy, sensitivity, specificity, and precision.

RESULTS

Hospital readmission within 90 days occurred in 1746 cases (18.9%). Total charges, number of diagnosis, age, number of chronic conditions, length of hospital stays, number of procedures, primary expected payer, and severity of illness emerged as the top eight important features in all-cause 90-day hospital readmission. All models had similar performance with ANN (AUC = 0.743) slightly outperforming the rest.

CONCLUSION

This study demonstrates a potential annual saving of over $500 million if all of the 90-day readmission cases could be prevented for 21 states represented in the NRD. Among the methods used, the prediction model built by ANN exhibited the best performance. Further testing using ANN and other methods can help to assess important readmission risk factors and to target interventions to those at the greatest risk.

摘要

引言

医院再入院率是医院提供的医疗保健质量的一个指标。将机器学习(ML)应用于医院再入院数据库有可能识别出再入院风险最高的患者。然而,很少有研究应用ML方法来预测医院再入院情况。本研究旨在评估ML作为一种工具,用于为牙科患者全因90天医院再入院情况开发预测模型。

方法

利用2013年全国再入院数据库(NRD),该研究识别出9260例牙科患者全因90天指数入院病例。实施了包括决策树、逻辑回归、支持向量机、k近邻和人工神经网络(ANN)在内的五种ML分类算法来构建预测模型。通过使用受试者工作特征曲线下面积(AUC)以及准确性、敏感性、特异性和精确性来估计和比较模型性能。

结果

90天内医院再入院发生在1746例(18.9%)。总费用、诊断数量、年龄、慢性病数量、住院时间、手术数量、主要预期支付方和疾病严重程度成为全因90天医院再入院的前八项重要特征。所有模型表现相似,ANN(AUC = 0.743)略优于其他模型。

结论

本研究表明,如果能预防NRD中所代表的21个州的所有90天再入院病例,每年可能节省超过5亿美元。在所使用的方法中,由ANN构建的预测模型表现最佳。使用ANN和其他方法进行进一步测试有助于评估重要的再入院风险因素,并针对风险最大的人群进行干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef4/7822935/75c7496067cf/41405_2021_57_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验