Suppr超能文献

使用人工智能预测颈动脉支架置入术后 30 天内非计划性再入院的因素。

Predictors of 30-Day Unplanned Readmission After Carotid Artery Stenting Using Artificial Intelligence.

机构信息

Division of Cardiology, University Hospital, University of South Alabama, 2451 University Hospital Dr, Suite 10D, Mobile, AL, 36617, USA.

Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA.

出版信息

Adv Ther. 2021 Jun;38(6):2954-2972. doi: 10.1007/s12325-021-01709-7. Epub 2021 Apr 9.

Abstract

INTRODUCTION

This study aimed to describe the rates and causes of unplanned readmissions within 30 days following carotid artery stenting (CAS) and to use artificial intelligence machine learning analysis for creating a prediction model for short-term readmissions. The prediction of unplanned readmissions after index CAS remains challenging. There is a need to leverage deep machine learning algorithms in order to develop robust prediction tools for early readmissions.

METHODS

Patients undergoing inpatient CAS during the year 2017 in the US Nationwide Readmission Database (NRD) were evaluated for the rates, predictors, and costs of unplanned 30-day readmission. Logistic regression, support vector machine (SVM), deep neural network (DNN), random forest, and decision tree models were evaluated to generate a robust prediction model.

RESULTS

We identified 16,745 patients who underwent CAS, of whom 7.4% were readmitted within 30 days. Depression [p < 0.001, OR 1.461 (95% CI 1.231-1.735)], heart failure [p < 0.001, OR 1.619 (95% CI 1.363-1.922)], cancer [p < 0.001, OR 1.631 (95% CI 1.286-2.068)], in-hospital bleeding [p = 0.039, OR 1.641 (95% CI 1.026-2.626)], and coagulation disorders [p = 0.007, OR 1.412 (95% CI 1.100-1.813)] were the strongest predictors of readmission. The artificial intelligence machine learning DNN prediction model has a C-statistic value of 0.79 (validation 0.73) in predicting the patients who might have all-cause unplanned readmission within 30 days of the index CAS discharge.

CONCLUSIONS

Machine learning derived models may effectively identify high-risk patients for intervention strategies that may reduce unplanned readmissions post carotid artery stenting.

CENTRAL ILLUSTRATION

Figure 2: ROC and AUPRC analysis of DNN prediction model with other classification models on 30-day readmission data for CAS subjects.

摘要

简介

本研究旨在描述颈动脉支架置入术(CAS)后 30 天内计划性再入院的发生率和原因,并利用人工智能机器学习分析建立短期再入院的预测模型。预测指数 CAS 后计划性再入院仍然具有挑战性。需要利用深度学习算法开发强大的预测工具,以早期预测再入院。

方法

评估 2017 年美国全国再入院数据库(NRD)中接受住院 CAS 的患者计划性 30 天再入院的发生率、预测因素和费用。评估逻辑回归、支持向量机(SVM)、深度神经网络(DNN)、随机森林和决策树模型,以生成稳健的预测模型。

结果

我们确定了 16745 例接受 CAS 的患者,其中 7.4%在 30 天内再入院。抑郁[P<0.001,OR 1.461(95%CI 1.231-1.735)]、心力衰竭[P<0.001,OR 1.619(95%CI 1.363-1.922)]、癌症[P<0.001,OR 1.631(95%CI 1.286-2.068)]、住院内出血[P=0.039,OR 1.641(95%CI 1.026-2.626)]和凝血障碍[P=0.007,OR 1.412(95%CI 1.100-1.813)]是再入院的最强预测因素。人工智能机器学习 DNN 预测模型在预测索引 CAS 出院后 30 天内可能发生全因计划性再入院的患者方面,其 C 统计量值为 0.79(验证值为 0.73)。

结论

机器学习衍生模型可有效识别高危患者,采取干预策略可减少颈动脉支架置入术后计划性再入院。

重点图示

图 2:DNN 预测模型与 CAS 患者 30 天再入院数据的其他分类模型的 ROC 和 AUPRC 分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77d2/8190015/ab37add85e45/12325_2021_1709_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验