Research Initiative for Supra-Materials, Shinshu University, Nagano City, Japan.
Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
Nat Commun. 2021 Jan 22;12(1):546. doi: 10.1038/s41467-020-20744-6.
Isotopes of heavier gases including carbon (C/C), nitrogen (N), and oxygen (O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules. These labelled molecules are employed in clinical radiopharmaceuticals, in studies of brain disease and as imaging probes for advanced medical imaging techniques such as positron-emission tomography (PET). Established distillation-based isotope gas separation methods have a separation factor (S) below 1.05 and incur very high operating costs due to high energy consumption and long processing times, highlighting the need for new separation technologies. Here, we show a rapid and highly selective adsorption-based separation of O from O with S above 60 using nanoporous adsorbents operating near the boiling point of methane (112 K), which is accessible through cryogenic liquefied-natural-gas technology. A collective-nuclear-quantum effect difference between the ordered O and O molecular assemblies confined in subnanometer pores can explain the observed equilibrium separation and is applicable to other isotopic gases.
包括碳 (C/C)、氮 (N) 和氧 (O) 在内的较重气体的同位素非常重要,因为它们可以替代天然存在的原子,而不会显著改变放射性标记母体分子的生化特性。这些标记分子被用于临床放射性药物、脑疾病研究以及正电子发射断层扫描 (PET) 等先进医学成像技术的成像探针。现有的基于蒸馏的同位素气体分离方法的分离因子 (S) 低于 1.05,由于高能耗和长处理时间,运营成本非常高,这突显了对新技术的需求。在这里,我们使用在接近甲烷沸点 (112 K) 下运行的纳米多孔吸附剂,展示了一种快速且高度选择性的基于吸附的 O 与 O 的分离,其分离因子 (S) 超过 60,这可通过低温液化天然气技术实现。在亚纳米孔中受限的有序 O 和 O 分子组装之间的集体核量子效应差异可以解释观察到的平衡分离,并且适用于其他同位素气体。