Zhao Zhe, Zhang Runzhou, Song Hao, Pang Kai, Almaiman Ahmed, Zhou Huibin, Song Haoqian, Liu Cong, Hu Nanzhe, Su Xinzhou, Minoofar Amir, Sasaki Hirofumi, Lee Doohwan, Tur Moshe, Molisch Andreas F, Willner Alan E
Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
King Saud University, Riyadh, 11362, Saudi Arabia.
Sci Rep. 2021 Jan 22;11(1):2110. doi: 10.1038/s41598-020-80179-3.
Orbital-angular-momentum (OAM) multiplexing has been utilized to increase the channel capacity in both millimeter-wave and optical domains. Terahertz (THz) wireless communication is attracting increasing attention due to its broadband spectral resources. Thus, it might be valuable to explore the system performance of THz OAM links to further increase the channel capacity. In this paper, we study through simulations the fundamental system-degrading effects when using multiple OAM beams in THz communications links under atmospheric turbulence. We simulate and analyze the effects of divergence, turbulence, limited-size aperture, and misalignment on the signal power and crosstalk of THz OAM links. We find through simulations that the system-degrading effects are different in two scenarios with atmosphere turbulence: (a) when we consider the same strength of phasefront distortion, faster divergence (i.e., lower frequency; smaller beam waist) leads to higher power leakage from the transmitted mode to neighbouring modes; and (b) however, when we consider the same atmospheric turbulence, the divergence effect tends to affect the power leakage much less, and the power leakage increases as the frequency, beam waist, or OAM order increases. Simulation results show that: (i) the crosstalk to the neighbouring mode remains < - 15 dB for a 1-km link under calm weather, when we transmit OAM + 4 at 0.5 THz with a beam waist of 1 m; (ii) for the 3-OAM-multiplexed THz links, the signal-to-interference ratio (SIR) increases by ~ 5-7 dB if the mode spacing increases by 1, and SIR decreases with the multiplexed mode number; and (iii) limited aperture size and misalignment lead to power leakage to other modes under calm weather, while it tends to be unobtrusive under bad weather.
轨道角动量(OAM)复用已被用于增加毫米波和光域中的信道容量。太赫兹(THz)无线通信因其丰富的宽带频谱资源而受到越来越多的关注。因此,探索太赫兹OAM链路的系统性能以进一步增加信道容量可能具有重要价值。在本文中,我们通过仿真研究了在大气湍流条件下太赫兹通信链路中使用多个OAM波束时的基本系统退化效应。我们模拟并分析了发散、湍流、有限孔径大小和对准误差对太赫兹OAM链路信号功率和串扰的影响。我们通过仿真发现,在两种存在大气湍流的场景中,系统退化效应有所不同:(a)当我们考虑相同强度的相位前沿畸变时,更快的发散(即更低的频率;更小的束腰)会导致从发射模式到相邻模式的更高功率泄漏;(b)然而,当我们考虑相同的大气湍流时,发散效应往往对功率泄漏的影响要小得多,并且功率泄漏会随着频率、束腰或OAM阶数的增加而增加。仿真结果表明:(i)在平静天气下,当我们在0.5 THz频率下以1 m的束腰发射OAM +4时,对于1 km的链路,到相邻模式的串扰保持在<-15 dB;(ii)对于3-OAM复用的太赫兹链路,如果模式间距增加1,信号与干扰比(SIR)会增加约5-7 dB,并且SIR会随着复用模式数量的增加而降低;(iii)在平静天气下,有限的孔径大小和对准误差会导致功率泄漏到其他模式,而在恶劣天气下这种影响往往不明显。