Suppr超能文献

基于深度学习的分数轨道角动量模式识别的自适应解调,该模式因大气湍流而产生结构失真。

Adaptive demodulation by deep-learning-based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence.

作者信息

Na Youngbin, Ko Do-Kyeong

机构信息

Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.

出版信息

Sci Rep. 2021 Dec 6;11(1):23505. doi: 10.1038/s41598-021-03026-z.

Abstract

Since the great success of optical communications utilizing orbital angular momentum (OAM), increasing the number of addressable spatial modes in the given physical resources has always been an important yet challenging problem. The recent improvement in measurement resolution through deep-learning techniques has demonstrated the possibility of high-capacity free-space optical communications based on fractional OAM modes. However, due to a tiny gap between adjacent modes, such systems are highly susceptible to external perturbations such as atmospheric turbulence (AT). Here, we propose an AT adaptive neural network (ATANN) and study high-resolution recognition of fractional OAM modes in the presence of turbulence. We perform simulations of fractional OAM beams propagating through a 1-km optical turbulence channel and analyze the effects of turbulence strength, OAM mode interval, and signal noise on the recognition performance of the ATANN. The recognition of multiplexed fractional modes is also investigated to demonstrate the feasibility of high-dimensional data transmission in the proposed deep-learning-based system. Our results show that the proposed model can predict transmitted modes with high accuracy and high resolution despite the collapse of structured fields due to AT and provide stable performance over a wide SNR range.

摘要

自从利用轨道角动量(OAM)的光通信取得巨大成功以来,在给定物理资源中增加可寻址空间模式的数量一直是一个重要且具有挑战性的问题。最近通过深度学习技术实现的测量分辨率的提高,证明了基于分数OAM模式的高容量自由空间光通信的可能性。然而,由于相邻模式之间的差距极小,此类系统极易受到诸如大气湍流(AT)等外部干扰的影响。在此,我们提出一种AT自适应神经网络(ATANN),并研究在存在湍流的情况下对分数OAM模式的高分辨率识别。我们对分数OAM光束在1公里光湍流通道中的传播进行了模拟,并分析了湍流强度、OAM模式间隔和信号噪声对ATANN识别性能的影响。还研究了复用分数模式的识别,以证明在所提出的基于深度学习的系统中进行高维数据传输的可行性。我们的结果表明,尽管由于AT导致结构化场崩溃,但所提出的模型仍能以高精度和高分辨率预测传输模式,并在很宽的信噪比范围内提供稳定的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/8648874/906e606df820/41598_2021_3026_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验