Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China.
Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000 Hubei, China.
Cardiovasc Res. 2022 Jan 7;118(1):196-211. doi: 10.1093/cvr/cvab013.
The aim of this study was to identify the molecular mechanism for hyperglycaemia-induced metabolic memory in endothelial cells (ECs), and to show its critical importance to development of cardiovascular dysfunction in diabetes.
Hyperglycaemia induces increased nuclear factor-κB (NF-κB) signalling, up-regulation of miR-27a-3p, down-regulation of nuclear factor erythroid-2 related factor 2 (NRF2) expression, increased transforming growth factor-β (TGF-β) signalling, down-regulation of miR-29, and induction of endothelial-to-mesenchymal transition (EndMT), all of which are memorized by ECs and not erased when switched to a low glucose condition, thereby causing perivascular fibrosis and cardiac dysfunction. Similar metabolic memory effects are found for production of nitric oxide (NO), generation of reactive oxygen species (ROS), and the mitochondrial oxygen consumption rate in two different types of ECs. The observed metabolic memory effects in ECs are blocked by NRF2 activator tert-butylhydroquinone and a miR-27a-3p inhibitor. In vivo, the NRF2 activator and miR-27a-3p inhibitor block cardiac perivascular fibrosis and restore cardiovascular function by decreasing NF-κB signalling, down-regulating miR-27a-3p, up-regulating NRF2 expression, reducing TGF-β signalling, and inhibiting EndMT during insulin treatment of diabetes in streptozotocin-induced diabetic mice, whereas insulin alone does not improve cardiac function.
Our data indicate that disruption of hyperglycaemia-induced EC metabolic memory is required for restoring cardiac function during treatment of diabetes, and identify a novel molecular signalling pathway of NF-κB/miR-27a-3p/NRF2/ROS/TGF-β/EndMT involved in metabolic memory.
本研究旨在确定高血糖诱导的内皮细胞(EC)代谢记忆的分子机制,并证明其对糖尿病中心血管功能障碍发展的重要性。
高血糖诱导核因子-κB(NF-κB)信号转导增加、miR-27a-3p 上调、核因子红细胞 2 相关因子 2(NRF2)表达下调、转化生长因子-β(TGF-β)信号转导增加、miR-29 下调,诱导内皮-间质转化(EndMT),所有这些都被 EC 记忆,并在切换到低葡萄糖条件时不会被抹去,从而导致血管周围纤维化和心脏功能障碍。在两种不同类型的 EC 中,NO 的产生、活性氧(ROS)的产生和线粒体耗氧量也存在类似的代谢记忆效应。在 EC 中观察到的代谢记忆效应被 NRF2 激活剂 tert-butylhydroquinone 和 miR-27a-3p 抑制剂阻断。在体内,NRF2 激活剂和 miR-27a-3p 抑制剂通过降低 NF-κB 信号转导、下调 miR-27a-3p、上调 NRF2 表达、减少 TGF-β 信号转导和抑制 EndMT 来阻断链脲佐菌素诱导的糖尿病小鼠胰岛素治疗中的心脏血管周围纤维化,并恢复心血管功能,而胰岛素本身不能改善心脏功能。
我们的数据表明,在糖尿病治疗期间,恢复心脏功能需要破坏高血糖诱导的 EC 代谢记忆,并且确定了 NF-κB/miR-27a-3p/NRF2/ROS/TGF-β/EndMT 代谢记忆涉及的新的分子信号通路。