Suppr超能文献

针状P掺杂MoS₂/CoP阵列的界面工程作为用于全水解的高活性和耐用双功能电催化剂

Interface Engineering of Needle-Like P-Doped MoS /CoP Arrays as Highly Active and Durable Bifunctional Electrocatalyst for Overall Water Splitting.

作者信息

Hu Yan, Yu Hongbo, Qi Luoluo, Dong Jiaxin, Yan Puxuan, Taylor Isimjan Tayirjan, Yang Xiulin

机构信息

Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.

Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

出版信息

ChemSusChem. 2021 Mar 22;14(6):1565-1573. doi: 10.1002/cssc.202002873. Epub 2021 Feb 9.

Abstract

Developing a bifunctional water splitting catalyst with high efficiency and low cost are crucial in the electrolysis water industry. Here, we report a rational design and simple preparation method of MoS -based bifunctional electrocatalyst on carbon cloth (CC). The optimized P-doped MoS @CoP/CC catalyst presents low overpotentials for the hydrogen (HER) and oxygen evolution reactions (OER) of 64 and 282 mV in alkaline solution as well as 72 mV HER overpotential in H SO at a current density of 10 mA cm . Furthermore, P-MoS @CoP/CC as a bifunctional catalyst delivered relatively low cell voltages of 1.83 and 1.97 V at high current densities of 500 and mA cm in 30 % KOH. The two-electrode system showed a remarkable stability for 30 h, even outperformed the benchmark RuO ||Pt/C catalyst. The excellent electrochemical performance can be credited to the unique microstructure, high surface area, and the synergy between metal species. This study presents a possible alternative for noble metal-based catalysts to overcome the challenges of industrial applications.

摘要

开发一种高效且低成本的双功能析水催化剂对电解水行业至关重要。在此,我们报道了一种在碳布(CC)上基于MoS的双功能电催化剂的合理设计和简单制备方法。优化后的P掺杂MoS@CoP/CC催化剂在碱性溶液中对析氢反应(HER)和析氧反应(OER)的过电位较低,分别为64和282 mV,在H₂SO₄中,在电流密度为10 mA cm⁻²时HER过电位为72 mV。此外,P-MoS@CoP/CC作为双功能催化剂,在30 % KOH中,在500和1000 mA cm⁻²的高电流密度下,电池电压相对较低,分别为1.83和1.97 V。两电极系统在30 h内表现出显著的稳定性,甚至优于基准RuO₂||Pt/C催化剂。优异的电化学性能可归因于独特的微观结构、高表面积以及金属物种之间的协同作用。本研究为克服工业应用挑战的贵金属基催化剂提供了一种可能的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验