Zhou Guangyao, Wu Xiaomei, Zhao Mingming, Pang Huan, Xu Lin, Yang Jun, Tang Yawen
School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China.
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China.
ChemSusChem. 2021 Jan 21;14(2):699-708. doi: 10.1002/cssc.202002338. Epub 2020 Nov 17.
Searching for high-efficiency nonprecious bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is paramount for the advancement of water electrolysis technologies and the associated renewable energy devices. Modulation of electronic structure of an electrocatalyst via heterointerface engineering represents an efficient strategy to improve its electrocatalytic performance. Herein, a feasible hydrothermal synthesis of a novel heterostructured catalyst was demonstrated, comprising CoS nanocubes and vertically aligned MoS nanosheet arrays directly grown on flexible and conductive carbon cloth (CC) substrate (denoted as CoS /MoS @CC). Thanks to the elaborate interface engineering and vertically aligned nanosheet arrayed architecture, the resultant self-supported CoS /MoS @CC electrode possessed enriched exposed active sites, modulated electronic configuration, multidimensional mass transport channels, and outstanding mechanical strength, thereby affording exceptional electrocatalytic performances towards the HER and OER in alkaline electrolyte with overpotentials of 71 and 274 mV at 10 mA cm , respectively. In addition, a two-electrode electrolyzer assembled by CoS /MoS @CC required a cell voltage of 1.59 V at 10 mA cm with nearly 100 % faradaic efficiency and remarkable durability, showing great potential for scalable and economical water electrolysis.
寻找用于析氢反应(HER)和析氧反应(OER)的高效非贵金属双功能电催化剂对于水电解技术及相关可再生能源装置的发展至关重要。通过异质界面工程调节电催化剂的电子结构是提高其电催化性能的有效策略。在此,展示了一种可行的水热合成新型异质结构催化剂的方法,该催化剂由CoS纳米立方体和直接生长在柔性导电碳布(CC)基底上的垂直排列的MoS纳米片阵列组成(表示为CoS /MoS @CC)。得益于精心设计的界面工程和垂直排列的纳米片阵列结构,所得的自支撑CoS /MoS @CC电极具有丰富的暴露活性位点、调制的电子构型、多维传质通道和出色的机械强度,从而在碱性电解质中对HER和OER表现出优异的电催化性能,在10 mA cm时过电位分别为71和274 mV。此外,由CoS /MoS @CC组装的双电极电解槽在10 mA cm时需要1.59 V的电池电压,具有近100%的法拉第效率和出色的耐久性,显示出在可扩展和经济的水电解方面的巨大潜力。