Qingdao University of Science and Technology, Qingdao, 266042, Shandong (P. R., China.
Guangxi Key Laboratory of Clean Pulp &, Papermaking and Pollution Control, Nanning, 530004, Guangxi, P. R. China.
Chemistry. 2023 Jun 22;29(35):e202300629. doi: 10.1002/chem.202300629. Epub 2023 May 3.
The development of low-cost and high-efficiency bifunctional catalysts is still a challenge for hydrogen production through overall water splitting. This paper reports the in-situ synthesis of C-doped MoS /CoP/MoO using bacterial cellulose (BC) as the reducing agent and the source of C and using BC (MoS /Co MoO ⋅ 1.2H O/BC) as the template. Heterogeneous structure for hydrogen evolution reaction (HER) and alkaline water electrolysis in a wide pH range. Due to the large number of defect sites caused by C doping and the synergy between these three active components (MoS , CoP and MoO ), the HER and oxygen evolution reaction (OER) activities of the catalyst have been greatly improved. Therefore, during HER, a small initial overpotential (27 mV) was achieved in 1.0 M KOH. In 0.5 M H SO , 0.1 M PBS and 1.0 M KOH, the current density reached 10 mA cm at overpotentials of 123.4, 150, and 139 mV, respectively. For OER, an overpotential of 268 mV was required to achieve 10 mA cm . The alkaline two-electrode device composed of C doped MoS /CoP/MoO delivers 10 mA cm at a low potential of 1.51 V and can be easily driven by a single AA battery. This work provides a new design strategy of C doped ternary heterostructures for electrocatalysis and related energy applications.
制备低成本、高效率的双功能催化剂仍然是通过整体水分解制氢的一个挑战。本文报道了一种以细菌纤维素(BC)为还原剂和 C 源,原位合成 C 掺杂 MoS /CoP/MoO 的方法。采用细菌纤维素(MoS /Co MoO ⋅ 1.2H O/BC)作为模板,制备出用于宽 pH 范围析氢反应(HER)和碱性水电解的异质结构。由于 C 掺杂引起的大量缺陷位和这三种活性组分(MoS 、CoP 和 MoO )之间的协同作用,该催化剂的 HER 和析氧反应(OER)活性得到了极大的提高。因此,在 1.0 M KOH 中,HER 仅需 27 mV 的小过电位即可达到 10 mA cm 的电流密度。在 0.5 M H SO 、0.1 M PBS 和 1.0 M KOH 中,过电位分别为 123.4、150 和 139 mV 时,电流密度即可达到 10 mA cm 。对于 OER,需要 268 mV 的过电位才能达到 10 mA cm 。由 C 掺杂 MoS /CoP/MoO 组成的碱性两电极装置在 1.51 V 的低电位下可提供 10 mA cm 的电流密度,可轻松由单个 AA 电池驱动。这项工作为电催化和相关能源应用提供了一种 C 掺杂三元异质结构的新设计策略。