Suppr超能文献

考虑进行系统评价时:评估不同参考文献去重方法的性能。

Considerations for conducting systematic reviews: evaluating the performance of different methods for de-duplicating references.

机构信息

Bracken Health Sciences Library, Queen's University, 18 Stuart Street, Kingston, Ontario, K7L 2V5, Canada.

Departments of Surgery and Public Health Sciences, Queen's University & Kingston Health Sciences Centre, 76 Stuart Street, Kingston, Ontario, K7L 2V7, Canada.

出版信息

Syst Rev. 2021 Jan 23;10(1):38. doi: 10.1186/s13643-021-01583-y.

Abstract

BACKGROUND

Systematic reviews involve searching multiple bibliographic databases to identify eligible studies. As this type of evidence synthesis is increasingly pursued, the use of various electronic platforms can help researchers improve the efficiency and quality of their research. We examined the accuracy and efficiency of commonly used electronic methods for flagging and removing duplicate references during this process.

METHODS

A heterogeneous sample of references was obtained by conducting a similar topical search in MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and PsycINFO databases. References were de-duplicated via manual abstraction to create a benchmark set. The default settings were then used in Ovid multifile search, EndNote desktop, Mendeley, Zotero, Covidence, and Rayyan to de-duplicate the sample of references independently. Using the benchmark set as reference, the number of false-negative and false-positive duplicate references for each method was identified, and accuracy, sensitivity, and specificity were determined.

RESULTS

We found that the most accurate methods for identifying duplicate references were Ovid, Covidence, and Rayyan. Ovid and Covidence possessed the highest specificity for identifying duplicate references, while Rayyan demonstrated the highest sensitivity.

CONCLUSION

This study reveals the strengths and weaknesses of commonly used de-duplication methods and provides strategies for improving their performance to avoid unintentionally removing eligible studies and introducing bias into systematic reviews. Along with availability, ease-of-use, functionality, and capability, these findings are important to consider when researchers are selecting database platforms and supporting software programs for conducting systematic reviews.

摘要

背景

系统评价涉及到在多个文献数据库中搜索符合条件的研究。随着这种类型的证据综合越来越受到重视,各种电子平台的使用可以帮助研究人员提高研究的效率和质量。我们研究了在这个过程中,常用的电子方法标记和去除重复参考文献的准确性和效率。

方法

通过在 MEDLINE、Embase、Cochrane 中央对照试验注册库和 PsycINFO 数据库中进行类似的主题搜索,获得了一个异质的参考文献样本。通过手动抽象对参考文献进行去重,创建了一个基准集。然后,使用 Ovid 多文件搜索、EndNote 桌面、Mendeley、Zotero、Covidence 和 Rayyan 的默认设置,独立地对参考文献样本进行去重。使用基准集作为参考,确定了每种方法的假阴性和假阳性重复参考文献数量,并确定了准确性、敏感性和特异性。

结果

我们发现,最准确的识别重复参考文献的方法是 Ovid、Covidence 和 Rayyan。Ovid 和 Covidence 对识别重复参考文献具有最高的特异性,而 Rayyan 则表现出最高的敏感性。

结论

本研究揭示了常用去重方法的优缺点,并提供了提高其性能的策略,以避免无意中去除合格的研究并在系统评价中引入偏差。除了可用性、易用性、功能和能力之外,这些发现对于研究人员在选择数据库平台和支持软件程序进行系统评价时非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e9c/7827976/5dea6389e08a/13643_2021_1583_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验