支持系统评价过程的数字工具:简介
Digital Tools to Support the Systematic Review Process: An Introduction.
作者信息
Schmidt Lena, Cree Ian, Campbell Fiona
机构信息
National Institute for Health and Care Research Innovation Observatory, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
International Agency for Research on Cancer, Lyon, France.
出版信息
J Eval Clin Pract. 2025 Apr;31(3):e70100. doi: 10.1111/jep.70100.
BACKGROUND
The introduction of systematic reviews in medicine has prompted a paradigm shift in employing evidence for decision-making across various fields. Its methodology involves structured comparisons, critical appraisals, and pooled data analysis to inform decision-making. The process itself is resource-intensive and time-consuming which can impede the timely incorporation of the latest evidence into clinical practice.
AIM
This article introduces digital tools designed to enhance systematic review processes, emphasizing their functionality, availability, and independent validation in peer-reviewed literature.
METHODS
We discuss digital evidence synthesis tools for systematic reviews, identifying tools for all review processes, tools for search strategy development, reference management, study selection, data extraction, and critical appraisal. Emphasis is on validated, functional tools with independently published method evaluations.
RESULTS
Tools like EPPI-Reviewer, Covidence, DistillerSR, and JBI-SUMARI provide comprehensive support for systematic reviews. Additional tools cater to evidence search (e.g., PubMed PICO, Trialstreamer), reference management (e.g., Mendeley), prioritization in study selection (e.g., Abstrackr, EPPI-Reviewer, SWIFT-ActiveScreener), and risk bias assessment (e.g., RobotReviewer). Machine learning and AI integration facilitate workflow efficiency but require end-user informed evaluation for their adoption.
CONCLUSION
The development of digital tools, particularly those incorporating AI, represents a significant advancement in systematic review methodology. These tools not only support the systematic review process but also have the potential to improve the timeliness and quality of evidence available for decision-making. The findings are relevant to clinicians, researchers, and those involved in the production or support of systematic reviews, with broader applicability to other research methods.
背景
医学领域引入系统评价促使各领域在决策时采用证据的方式发生了范式转变。其方法包括结构化比较、批判性评价和汇总数据分析,以为决策提供信息。该过程本身资源密集且耗时,可能会阻碍将最新证据及时纳入临床实践。
目的
本文介绍旨在加强系统评价过程的数字工具,强调其功能、可用性以及在同行评审文献中的独立验证情况。
方法
我们讨论用于系统评价的数字证据综合工具,识别适用于所有评价过程的工具、用于制定检索策略的工具、参考文献管理工具、研究选择工具、数据提取工具和批判性评价工具。重点是经过验证的、具有独立发表的方法评价的功能性工具。
结果
EPPI-Reviewer、Covidence、DistillerSR和JBI-SUMARI等工具为系统评价提供全面支持。其他工具则适用于证据检索(如PubMed PICO、Trialstreamer)、参考文献管理(如Mendeley)、研究选择中的优先级排序(如Abstrackr、EPPI-Reviewer、SWIFT-ActiveScreener)以及风险偏倚评估(如RobotReviewer)。机器学习和人工智能的整合提高了工作流程效率,但需要终端用户进行明智的评估才能采用。
结论
数字工具的开发,尤其是那些整合了人工智能的工具,代表了系统评价方法的重大进步。这些工具不仅支持系统评价过程,还有可能提高用于决策的证据的及时性和质量。这些发现与临床医生、研究人员以及参与系统评价制作或支持的人员相关,对其他研究方法具有更广泛的适用性。