Alsharif Ifat, Boukhzar Loubna, Lefranc Benjamin, Godefroy David, Aury-Landas Juliette, Rego Jean-Luc do, Rego Jean-Claude do, Naudet Frédéric, Arabo Arnaud, Chagraoui Abdeslam, Maltête David, Benazzouz Abdelhamid, Baugé Catherine, Leprince Jérôme, Elkahloun Abdel G, Eiden Lee E, Anouar Youssef
UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen Normandie University, 76821, Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine, 76000, Rouen, France; Biology department, Jamoum University College, Umm Alqura University, Saudi Arabia.
UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen Normandie University, 76821, Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine, 76000, Rouen, France.
Redox Biol. 2021 Apr;40:101839. doi: 10.1016/j.redox.2020.101839. Epub 2020 Dec 28.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction for which there is an unmet need for better treatment options. Although oxidative stress is a common feature of neurodegenerative diseases, notably PD, there is currently no efficient therapeutic strategy able to tackle this multi-target pathophysiological process. Based on our previous observations of the potent antioxidant and neuroprotective activity of SELENOT, a vital thioredoxin-like selenoprotein, we designed the small peptide PSELT from its redox active site to evaluate its antioxidant properties in vivo, and its potential polyfunctional activity in PD models. PSELT protects neurotoxin-treated dopaminergic neurons against oxidative stress and cell death, and their fibers against neurotoxic degeneration. PSELT is cell-permeable and acts in multiple subcellular compartments of dopaminergic neurons that are vulnerable to oxidative stress. In rodent models of PD, this protective activity prevented neurodegeneration, restored phosphorylated tyrosine hydroxylase levels, and led to improved motor skills. Transcriptomic analysis revealed that gene regulation by PSELT after MPP treatment negatively correlates with that occurring in PD, and positively correlates with that occurring after resveratrol treatment. Mechanistically, a major impact of PSELT is via nuclear stimulation of the transcription factor EZH2, leading to neuroprotection. Overall, these findings demonstrate the potential of PSELT as a therapeutic candidate for treatment of PD, targeting oxidative stress at multiple intracellular levels.
帕金森病(PD)是一种以运动功能障碍为特征的神经退行性疾病,目前对于更好的治疗方案仍有未满足的需求。尽管氧化应激是神经退行性疾病(尤其是PD)的一个常见特征,但目前尚无有效的治疗策略能够应对这一多靶点病理生理过程。基于我们之前对重要的硫氧还蛋白样硒蛋白SELENOT的强大抗氧化和神经保护活性的观察,我们从其氧化还原活性位点设计了小肽PSELT,以评估其体内抗氧化特性及其在PD模型中的潜在多功能活性。PSELT可保护经神经毒素处理的多巴胺能神经元免受氧化应激和细胞死亡,并保护其纤维免受神经毒性变性。PSELT具有细胞通透性,作用于易受氧化应激影响的多巴胺能神经元的多个亚细胞区室。在PD啮齿动物模型中,这种保护活性可防止神经退行性变,恢复磷酸化酪氨酸羟化酶水平,并改善运动技能。转录组分析显示,MPP处理后PSELT对基因的调控与PD中发生的情况呈负相关,与白藜芦醇处理后发生的情况呈正相关。从机制上讲,PSELT的主要作用是通过对转录因子EZH2的核刺激,从而实现神经保护。总体而言,这些发现证明了PSELT作为治疗PD的候选药物的潜力,它可以在多个细胞内水平上针对氧化应激发挥作用。