Suppr超能文献

一种基于深度神经网络的面向制造的智能视觉系统,用于目标识别和6D位姿估计。

A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation.

作者信息

Liang Guoyuan, Chen Fan, Liang Yu, Feng Yachun, Wang Can, Wu Xinyu

机构信息

Center for Intelligent and Biomimetic Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

Front Neurorobot. 2021 Jan 7;14:616775. doi: 10.3389/fnbot.2020.616775. eCollection 2020.

Abstract

Nowadays, intelligent robots are widely applied in the manufacturing industry, in various working places or assembly lines. In most manufacturing tasks, determining the category and pose of parts is important, yet challenging, due to complex environments. This paper presents a new two-stage intelligent vision system based on a deep neural network with RGB-D image inputs for object recognition and 6D pose estimation. A dense-connected network fusing multi-scale features is first built to segment the objects from the background. The 2D pixels and 3D points in cropped object regions are then fed into a pose estimation network to make object pose predictions based on fusion of color and geometry features. By introducing the channel and position attention modules, the pose estimation network presents an effective feature extraction method, by stressing important features whilst suppressing unnecessary ones. Comparative experiments with several state-of-the-art networks conducted on two well-known benchmark datasets, YCB-Video and LineMOD, verified the effectiveness and superior performance of the proposed method. Moreover, we built a vision-guided robotic grasping system based on the proposed method using a Kinova Jaco2 manipulator with an RGB-D camera installed. Grasping experiments proved that the robot system can effectively implement common operations such as picking up and moving objects, thereby demonstrating its potential to be applied in all kinds of real-time manufacturing applications.

摘要

如今,智能机器人广泛应用于制造业、各种工作场所或装配线。在大多数制造任务中,由于环境复杂,确定零件的类别和位姿既重要又具有挑战性。本文提出了一种基于深度神经网络的新型两阶段智能视觉系统,该系统以RGB-D图像作为输入,用于目标识别和6D位姿估计。首先构建一个融合多尺度特征的密集连接网络,将目标从背景中分割出来。然后,将裁剪后的目标区域中的2D像素和3D点输入到位姿估计网络中,基于颜色和几何特征的融合进行目标位姿预测。通过引入通道注意力模块和位置注意力模块,位姿估计网络提出了一种有效的特征提取方法,突出重要特征同时抑制不必要的特征。在两个著名的基准数据集YCB-Video和LineMOD上与几个先进网络进行的对比实验,验证了所提方法的有效性和卓越性能。此外,我们基于所提方法构建了一个视觉引导的机器人抓取系统,该系统使用安装了RGB-D相机的Kinova Jaco2机械手。抓取实验证明,该机器人系统能够有效地执行诸如拾取和移动物体等常见操作,从而证明了其在各种实时制造应用中的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0c1/7817625/ece5c65b9630/fnbot-14-616775-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验