Costa-Gutierrez Stefanie B, Aparicio Juan Daniel, Delgado Osvaldo D, Benimeli Claudia S, Polti Marta A
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000 San Miguel de Tucumán, Tucumán Argentina.
Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina.
3 Biotech. 2021 Feb;11(2):57. doi: 10.1007/s13205-020-02588-5. Epub 2021 Jan 11.
In recent years, there has been an increasing interest in the remediation of contaminated environments, and a suitable solution is in situ bioremediation. To achieve this, large-scale bacterial biomass production should be sustainable, using economic culture media. The main aim of this study was to optimize the physicochemical conditions for the biomass production of an actinobacterium with well-known bioremediation ability using inexpensive substrates and to scale-up its production in a bioreactor. For this, the growth of four strains of actinobacteria were evaluated in minimal medium with glucose and glycerol as carbon and energy sources. In addition, l-asparagine and ammonium sulfate were assayed as alternative nitrogen sources. The strain sp. A5 showed the highest biomass production in shake-flasks culture using glycerol and ammonium sulfate as carbon and nitrogen sources, respectively. Factorial designs with five factors (glycerol concentration, inoculum size, pH, temperature, and agitation) were employed to optimize the biomass production of sp. A5. The maximum biomass production was obtained using 5 g L of glycerol, 0.25 µL of inoculum, pH 7, 30 °C and 200 rpm. Finally, the production was successfully scaled to a 2 L stirred tank bioreactor.
The online version contains supplementary material available at 10.1007/s13205-020-02588-5.
近年来,人们对污染环境的修复越来越感兴趣,一种合适的解决方案是原位生物修复。要实现这一点,大规模细菌生物质的生产应具有可持续性,并使用经济的培养基。本研究的主要目的是利用廉价底物优化具有著名生物修复能力的放线菌生物质生产的物理化学条件,并在生物反应器中扩大其生产规模。为此,在以葡萄糖和甘油作为碳源和能源的基本培养基中评估了四株放线菌的生长情况。此外,还检测了L-天冬酰胺和硫酸铵作为替代氮源的情况。菌株sp. A5在摇瓶培养中分别以甘油和硫酸铵作为碳源和氮源时表现出最高的生物质产量。采用包含五个因素(甘油浓度、接种量、pH值、温度和搅拌)的析因设计来优化sp. A5的生物质产量。使用5 g/L甘油、0.25 μL接种量、pH值7、30°C和200 rpm时获得了最大生物质产量。最后,成功将生产规模扩大到2 L搅拌罐生物反应器。
在线版本包含可在10.1007/s13205-020-02588-5获取的补充材料。