Wu Wenzhao, Maravelias Christos T
Dept. of Chemical and Biological Engineering and DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 USA.
Biotechnol Biofuels. 2018 Oct 27;11:294. doi: 10.1186/s13068-018-1285-7. eCollection 2018.
Recent advances in metabolic engineering enable the production of chemicals from sugars through microbial bio-conversion. Terpenes have attracted substantial attention due to their relatively high prices and wide applications in different industries. To this end, we synthesize and assess processes for microbial production of terpenes.
To explain a counterintuitive experimental phenomenon where terpenes such as limonene (normal boiling point 176 °C) are often found to be 100% present in the vapor phase after bio-conversion (operating at only ~ 30 °C), we first analyze the vapor-liquid equilibrium for systems containing terpenes. Then, we propose alternative production configurations, which are further studied, using limonene as an example, in several case studies. Next, we perform economic assessment of the alternative processes and identify the major cost components. Finally, we extend the assessment to account for different process parameters, terpene products, ways to address terpene toxicity (microbial engineering vs. solvent use), and cellulosic biomass as a feedstock. We identify the key cost drivers to be (1) feed glucose concentration (wt%), (2) product yield (% of maximum theoretical yield) and (3) VVM (Volume of air per Volume of broth liquid per Minute, i.e., aeration rate in min). The production of limonene, based on current experimental data, is found to be economically infeasible (production cost ~ 465 $/kg vs. market selling price ~ 7 $/kg), but higher glucose concentration and yield can lower the cost. Among 12 terpenes studied, limonene appears to be the most reasonable short-term target because of its large market size (~ 160 million $/year in the US) and the relatively easier to achieve break-even yield (~ 30%, assuming a 14 wt% feed glucose concentration and 0.1 min VVM).
The methods proposed in this work are applicable to a range of terpenes as well as other extracellular insoluble chemicals with density lower than that of water, such as fatty acids. The results provide guidance for future research in metabolic engineering toward terpenes production in terms of setting targets for key design parameters.
代谢工程的最新进展使得通过微生物生物转化从糖类生产化学品成为可能。萜类化合物因其相对较高的价格以及在不同行业的广泛应用而备受关注。为此,我们合成并评估了微生物生产萜类化合物的工艺。
为了解释一个违反直觉的实验现象,即在生物转化后(仅在约30°C下操作),柠檬烯等萜类化合物(正常沸点176°C)常常在气相中100%存在,我们首先分析了含萜类化合物体系的气液平衡。然后,我们提出了替代生产配置,并以柠檬烯为例,在几个案例研究中对其进行了进一步研究。接下来,我们对替代工艺进行了经济评估,并确定了主要成本构成。最后,我们将评估范围扩大,以考虑不同的工艺参数、萜类产品、解决萜类毒性的方法(微生物工程与使用溶剂)以及作为原料的纤维素生物质。我们确定关键成本驱动因素为:(1)进料葡萄糖浓度(重量%),(2)产品产率(最大理论产率的%)以及(3)VVM(每分钟每体积发酵液的空气体积,即每分钟的通气速率)。基于当前实验数据,发现柠檬烯的生产在经济上不可行(生产成本约465美元/千克,而市场售价约7美元/千克),但更高的葡萄糖浓度和产率可以降低成本。在所研究的12种萜类化合物中,柠檬烯似乎是最合理的短期目标,因为其市场规模较大(在美国约为1.6亿美元/年)且实现盈亏平衡产率相对更容易(约30%,假设进料葡萄糖浓度为14重量%且VVM为0.1分钟)。
本工作中提出的方法适用于一系列萜类化合物以及其他密度低于水的细胞外不溶性化学品,如脂肪酸。研究结果为代谢工程中萜类化合物生产的未来研究在设定关键设计参数目标方面提供了指导。