Rairkar A, Rubino H M, Lockard R E
Department of Biochemistry, Cornell University Medical College, New York, New York 10021.
Biochemistry. 1988 Jan 26;27(2):582-92. doi: 10.1021/bi00402a013.
The location of unpaired adenine residues within the secondary structure of rabbit 18S ribosomal RNA was determined by chemical probing. Naked 18S rRNA was first prepared by digestion of purified 40S subunits with matrix-bound proteinase K in sodium dodecyl sulfate, thereby omitting the use of nucleic acid denaturants. Adenines within naked 18S rRNA were chemically probed by using either diethyl pyrocarbonate or dimethyl sulfate, which specifically react with unpaired nucleotides [Peattie, D. A., & Gilbert, W. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 4679-4682]. Adenine modification sites were identified by polyacrylamide sequencing gel electrophoresis either upon aniline-induced strand scission of 32P-end-labeled intact and fragmented rRNA or by primer extension using sequence-specific DNA oligomers with reverse transcriptase. The data indicate good agreement between the general pattern of adenine reactivity and the location of unpaired regions in 18S rRNA determined by comparative sequence analysis [Chan, Y.-L., Gutell, R., Noller, H. F., & Wool, I. G. (1984) J. Biol. Chem. 259, 224-230]. The overall reactivity of adenine residues toward single-strand-specific chemical probes was, also, similar for both rabbit and Escherichia coli small rRNA. The number of strongly reactive adenines appearing within phylogenetically determined helical segments, however, was greater in rabbit 18S rRNA than for E. coli 16S rRNA. Some of these adenines were found clustered in specific helices. Such differences suggest a greater irregularity of many of the helical elements within mammalian 18S rRNA, as compared with prokaryotic 16S rRNA. These helical irregularities could be important for protein association and also may represent biologically relevant flexible regions of the molecule.
通过化学探测确定了兔18S核糖体RNA二级结构中未配对腺嘌呤残基的位置。首先通过在十二烷基硫酸钠中用基质结合的蛋白酶K消化纯化的40S亚基来制备裸露的18S rRNA,从而避免使用核酸变性剂。使用焦碳酸二乙酯或硫酸二甲酯对裸露的18S rRNA中的腺嘌呤进行化学探测,它们能与未配对的核苷酸特异性反应[Peattie, D. A., & Gilbert, W. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 4679 - 4682]。通过对32P末端标记的完整和片段化rRNA进行苯胺诱导的链断裂后进行聚丙烯酰胺测序凝胶电泳,或者使用序列特异性DNA寡聚物与逆转录酶进行引物延伸来鉴定腺嘌呤修饰位点。数据表明,腺嘌呤反应性的总体模式与通过比较序列分析确定的18S rRNA中未配对区域的位置之间具有良好的一致性[Chan, Y.-L., Gutell, R., Noller, H. F., & Wool, I. G. (1984) J. Biol. Chem. 259, 224 - 230]。兔和大肠杆菌的小rRNA中,腺嘌呤残基对单链特异性化学探针的总体反应性也相似。然而,在系统发育确定的螺旋片段中出现的强反应性腺嘌呤的数量,兔18S rRNA比大肠杆菌16S rRNA更多。其中一些腺嘌呤聚集在特定的螺旋中。这些差异表明,与原核生物的16S rRNA相比,哺乳动物18S rRNA中许多螺旋元件的不规则性更大。这些螺旋不规则性可能对蛋白质结合很重要,也可能代表分子中生物学上相关的柔性区域。