Chattopadhyay Sudip
Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India.
ACS Omega. 2021 Jan 7;6(2):1668-1686. doi: 10.1021/acsomega.0c05714. eCollection 2021 Jan 19.
The state-specific Brillouin-Wigner multireference perturbation theory [which employs Jeziorski-Monkhorst parametrization of the wave function] using improved virtual orbitals, denoted as IVO-BWMRPT, is applied to calculate excitation energies (EEs) for methylene, ethylene, trimethylenemethane, and benzyne systems exhibiting various degrees of diradical character. In IVO-BWMRPT, all of the parameters appearing in the wave function ansatz are optimized for a specific electronic state. For these systems, the IVO-BWMRPT method provides EEs that are in close agreement with the benchmark results and experiments, where available, indicating that the method does not introduce imbalance in the target-specific treatment of closed- and open-shell states involved. The good performance of the present methodology is primarily related to structural compactness of the formalism. Overall, present findings are encouraging for both further development of the approach and chemical applications on the energy differences of strongly correlated systems.
采用改进虚拟轨道的特定态布里渊 - 维格纳多参考微扰理论[该理论采用波函数的耶齐尔斯基 - 蒙克霍斯特参数化],记为IVO - BWMRPT,用于计算具有不同程度双自由基特征的亚甲基、乙烯、三亚甲基甲烷和苯炔体系的激发能(EEs)。在IVO - BWMRPT中,波函数假设中出现的所有参数都针对特定电子态进行了优化。对于这些体系,IVO - BWMRPT方法提供的激发能与基准结果以及(如有)实验结果高度吻合,这表明该方法在涉及的闭壳层和开壳层态的目标特定处理中不会引入不平衡。本方法的良好性能主要与形式体系的结构紧凑性有关。总体而言,目前的研究结果对于该方法的进一步发展以及在强相关体系能量差方面的化学应用都具有鼓舞作用。