Lewis Fraser I, Guga Godfrey, Mdoe Paschal, Mduma Esto, Mahopo Cloupas, Bessong Pascal, Richard Stephanie A, McCormick Benjamin J J
Independent Researcher, Utrecht, The Netherlands.
Haydom Lutheran Hospital, Haydom, Tanzania.
Gates Open Res. 2020 Nov 26;4:71. doi: 10.12688/gatesopenres.13123.2. eCollection 2020.
: Growth trajectories are highly variable between children, making epidemiological analyses challenging both to the identification of malnutrition interventions at the population level and also risk assessment at individual level. We introduce stochastic differential equation (SDE) models into child growth research. SDEs describe flexible dynamic processes comprising: drift - gradual smooth changes - such as physiology or gut microbiome, and diffusion - sudden perturbations, such as illness or infection. : We present a case study applying SDE models to child growth trajectory data from the Haydom, Tanzania and Venda, South Africa sites within the MAL-ED cohort. These data comprise n=460 children aged 0-24 months. A comparison with classical curve fitting (linear mixed models) is also presented. : The SDE models offered a wide range of new flexible shapes and parameterizations compared to classical additive models, with performance as good or better than standard approaches. The predictions from the SDE models suggest distinct longitudinal clusters that form distinct 'streams' hidden by the large between-child variability. : Using SDE models to predict future growth trajectories revealed new insights in the observed data, where trajectories appear to cluster together in bands, which may have a future risk assessment application. SDEs offer an attractive approach for child growth modelling and potentially offer new insights.
儿童之间的生长轨迹差异很大,这使得流行病学分析在确定人群层面的营养不良干预措施以及个体层面的风险评估方面都具有挑战性。我们将随机微分方程(SDE)模型引入儿童生长研究。随机微分方程描述了灵活的动态过程,包括:漂移——逐渐的平滑变化,如生理或肠道微生物群,以及扩散——突然的扰动,如疾病或感染。我们展示了一个案例研究,将随机微分方程模型应用于MAL-ED队列中来自坦桑尼亚海多姆和南非文达地区的儿童生长轨迹数据。这些数据包括460名年龄在0至24个月的儿童。还展示了与经典曲线拟合(线性混合模型)的比较。与经典加法模型相比,随机微分方程模型提供了广泛的新的灵活形状和参数化方式,其性能与标准方法相当或更好。随机微分方程模型的预测表明存在明显的纵向聚类,这些聚类形成了由儿童间的巨大变异性所掩盖的不同“流”。使用随机微分方程模型预测未来生长轨迹揭示了观测数据中的新见解,即轨迹似乎成带聚集在一起,这可能在未来的风险评估中有应用。随机微分方程为儿童生长建模提供了一种有吸引力的方法,并可能提供新的见解。